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Synopsis
Energetic atomic particles slowing down in a solid or a gas create cascades of atomic col

lisions. This paper deals with the spatial distribution of the energy dissipated within the cascades, 
at the end of the slowing-down process. This distribution is of central interest in the theory of 
radiation damage and sputtering. An integro-differential equation determining the distribution 
function is derived under the assumption of random slowing down in an infinite medium. A set 
of equations is derived determining spatial moments over the distribution functions, and the 
moment equations are solved explicitly under the assumption of elastic scattering with power
law cross sections. The theory applies to heavy ions or recoil atoms in the keV range (for lighter 
ions only in the lower keV range), slowing down in a (monatomic or polyatomic) target under 
conditions where crystal lattice effects may be neglected. Moments over the distribution are 
tabulated for a wide range of mass ratios and several exponents in the Lindhard power cross 
section, and are compared to corresponding moments over the distribution of ion ranges. Several 
methods of constructing distributions from spatial moments are discussed, and some typical 
energy and range distributions are presented, both in one dimension (depth distribution) and 
three dimensions. A brief discussion of the experimental situation concludes the paper.
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1. Introduction

his is the first of a series of papers dealing with the spatial extension of
A radiation damage induced by energetic atomic particles bombarding a 
random target. The term radiation damage is used in a rather general sense 
to comprise a number of changes in physical properties that may be con
sidered stable on a time scale determined by the slowing down of the pri
mary particle, such as lattice defects, disordering, ionization, dissociation, 
etc. The bombarding particles may come from an external source such as 
ions from an accelerator, or from internal sources such as recoil atoms 
from radioactive decays or collisions caused by fast neutrons in a reactor. 
The targets may be gases, liquids, amorphous solids and, with some re
strictions, crystalline solids.

Since radiation damage is a consequence of the deposition of the energy 
of the bombarding particle in the target, the spatial distribution of deposited 
energy is of primary interest for all damage effects that are proportional 
to the amount of energy deposited, and for emission phenomena like sput
tering and secondary electron emission.

In general the energy of the primary particle will be shared between 
atoms and electrons of the target. It is necessary to separate these two con
tributions since the slowing-down behaviour of electrons and atoms is dif
ferent. A further separation may have to be made when the target consists 
of more than one kind of atom.

In this first paper we deal with the comparatively simple case of a heavy 
ion or atom slowing down by binary elastic collisions, i. e. slow enough 
that the energy dissipated among electrons may be neglected as a first ap
proximation. This is a useful starting point since many calculations can be 
performed by exact methods. The results should be appropriate for keV 
ions, the actual energy limit being determined by the atomic numbers of 
the ion and the target.
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It turns out that the equations governing the spatial distribution of de
posited energy are much like those determining the distribution of ion 
ranges. Both sets of equations can be solved by applying the same methods, 
and sometimes even the quantitative results are rather similar. We shall 
compare ion ranges and damage distributions extensively. One major 
reason is that very accurate measurements of range distributions have been 
done, while existing measurements of damage distributions suffer from 
various kinds of uncertainties.

The basic physical assumptions entering the theory are essentially those 
formulated by Lindiiard and his colleagues in a series of three papers 
published in this journal (Lindiiard et al., 19G3a, b, 1968). The mathemat
ical formalism has been described in detail by one of us (Sanders, 1968a, 
b, 1969). Parts of the present work have been presented at a recent con
ference (Sigmund & Sanders, 1967), and some results have been utilized 
in more specific applications (Sigmund et al., 1968; Sigmund, 1968, 1969a). 
In Section 2 we briefly summarize the scattering cross sections used in the 
present paper and discuss a zero order approximation to the damage distri
bution, based only on the specific energy loss. Integral equations deter
mining energy distributions are derived in Section 3, and special care is 
taken to make the notation general enough to enable us to use the same 
equations under less restrictive assumptions. In Section 4 we consider 
equations determining moments over the damage distribution, and in 
Section 5 these equations are solved. While our previous calculations 
(Sigmund & Sanders, 1967) were done on a desk calculator, the present 
results were obtained by computer. This allows getting higher moments 
than previously and thus constructing distribution functions from the 
moments with more accuracy. Section 6 is devoted to this problem. Nu
merical results are presented in Section 7, and Section 8 contains a com
parison with experimental and computer work.

2. Scattering & Stopping Cross Sections
Elastic Scattering

For screened Coulomb interaction between an ion and an atom or between two 
atoms Lindiiard et al. (1968) derived the following approximate form of the dif
ferential cross section:

where

= 7ia2^2/’(/1/2)’
(1)
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f - e^TlTm,
Tm — ?E,
E = initial energy,
T = recoil energy, 0 < T < Tm,
y = + Af2)2,
M\ = mass of scattered particle,
M2 = mass of recoiling particle,

/ M2E \/ZiZ2e2\~1 (la)
e~\M1 + M2)\ a J ’

Zi = atomic number of scattered particle,
Z2 = atomic number of recoiling particle,
a = screening radius,
ft/1/2) is a function that depends on the assumed form of the screening 
function.

The last two quantities are not accurately known. We shall follow Lindiiard 
et al. (1968) and use the screening radius

a = 0.8853 a0 Z~W (2)
where

Z2/3 = Zi2/2 + Z22/3, (2 a)

ciQ = ft2/me2 = 0.529 Å.

The function ft/1/2) has been calculated for the collision of neutral Thomas- 
Fermi atoms. Fig. 1 shows Lindhard’s ft/1/2) together with an analytical approx
imation

ftft/1/2) = A'/l/6[l + (2/72/3)2/3]-3/2, (3)
where

Â' = 1.309.

We determined E by least-squares fit to the numerical curve. It is seen that the two 
curves agree to well within the accuracy of the Thomas-Fermi approximation.

At small t eq. (3) goes over into ft/1/2) = Â71/6, which is a special case of the 
power approximation (Lindhard et al., 1968)

ft/1/2) = Wl/2-^. (4)

Figure 1 also shows three examples of (4) for m = 1/3, 1/2 and 1 with

/1/3 = r = 1.309; /1/2 = 0.327; = 0.5. (4 a)

It is seen that the case m = 1/3 is an excellent approximation at small values 
of t, m = 1/2 is a reasonable over-all approximation, and m = 1 (Rutherford 
scattering) is appropriate for t )) 1. In general (4) describes approximately the 
scattering from a potential of the form V(r) x r~1/'m.

In the following paragraphs we work only with the cross sections of (4) for sev
eral values of m since they allow simple analytic solution of the integral equations 
for range and damage distributions. From (1), (la) and (4) we obtain
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Fig. 1. Reduced Differential Cross Sections Calculated from Thomas-Fermi Potential. Thick 
solid line: Lindhard’s numerical result. Dashed line: eq. (3). Thin solid lines: Power cross sec

tions, eq. (4).

where
du = CE~mT^~mdT,

C
^Mip(2ZiZ2e2j2m

(5)

(5 a)

Apart from the above three choices, we have made numerical calculations with 
m = 2/3, 1/4, 1/8, and 1/16. While there is no specific energy region in Fig. 1 where 
any of these exponents would provide a particularly useful approximation to f(Z1/2) 
such calculations give an indication of how sensitive a quantity is to the shape of 
the differential cross section.

Calculations with the more accurate cross section (3) have also been performed. 
These can be done either analytically or numerically. In order that these results 
allow a more quantitative comparison with experiment than is possible on the basis 
of power cross sections it is necessary at the same time to include the effect of 
electronic energy loss. This work will be published separately.

To estimate the range of validity of the power cross sections it is convenient to 
consider the stopping cross section

1 dE r
S,E> =~NäR- ]

0

Tdu, (6)
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Fig. 2. Reduced Nuclear Stopping Cross Sections Calculated from Thomas-Fermi Potential.
Thick solid line: Lindhard’s numerical result. Dashed line: Integrated from eq. (3). Thin solid 

lines: eq. (10).

where dE/dR is the specific energy loss and N the density of atoms in the target, 
and the path length,

E
r dE

R(E) = --------- . (7)J NS(E) v ’
o

In dimensionless units (Lindhard et al. 1968), these read

£
s(e) = = I fw1/2)^1/2, (8)

0
and

e
c de 

eV) = ; ?J s(e)
0

where
q = RNna^y. (9 a)

Fig. 2 compares Lindhard’s numerical curve with the one following from (3) 
by integration and the power laws
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Fig. 3. Reduced Path Lengths. Dashed line: Integrated from eq. (3). Thin solid lines: eq. (11).

s(e) = -----—----gl-2m (10)
2(1 -m)

corresponding to
Q

S(E) = --------?l-wi£l-2m. (ip a)
1 - in

Fig. 3 compares the path length following from eq. (3) with the power law patli 
lengths

i?(£) = (—-m)£2^. (ii)

If ~ 20 °/0 accuracy in both stopping and path length is required for the power 
cross-sections to be acceptable we obtain the following ranges of validity:

m = 1/3 for e < 0.2 I
~ J (12)

m = 1/2 for 0.08 < e < 2. J

Note also that the power law stopping with m = 1/3 is indistinguishable from 
the Lindhard stopping on the scale of the figure for e < 0.02, while the path length 
figure indicates that the m = 1/2 stopping cross-section is a reasonable overall 
approximation. (Bohr 1948; Nielsen, 1956). At very low energies all these cross 
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sections should be taken with caution since the Thomas-Fermi treatment becomes 
questionable.

It may be noted that in a previous communication (Sigmund & Sanders, 1967) 
we used a slightly different coefficient in the power cross section for m = 1/3 (Â1/3 = 
1.19), and energy limits that differed from eq. (12). This is because both were de
termined only from the range-energy relationship.

Electronic Energy Loss
According to Lindhard & Scharff (1961) electronic stopping can be approx

imated by
de\— = - A-eVa for E < z^FAi • 25 keV, (13)

where k is of the order of 0.1 to 0.2 except for Zi << Z2 where A can become larger
than 1. Ai is the atomic weight of the ion. Thus, for e < 1 electronic stopping is
usually a minor correction, unless Zi 10 Z2, when it may not be neglected
(Schiøtt, 1966).

Deposited Energy: Simple Estimate

Lindhard et al. (1963 b) established their basic range vs. energy rela
tionship by evaluating the integral of eq. (9). This would be appropriate 
for continuous slowing down along a straight line. Subsequently they showed 
that (9) is a good approximation to the total travelled path length even 
when the slowing down is not continuous, and that the path length does 
not deviate much from the projected range as long as Mi >M2. It is tempting 
to make a similar estimate for the deposited energy. For purely elastic stop
ping the amount of energy deposited in primary collisions on the path ele
ment dx is given by

dE = N S(E(x)) dx = F(x) dx (14)

where x is the path length travelled from the initial energy E down to energy 
E(x). Eq. (14) defines a depth distribution function F(x) of energy loss, 
which neglects the fact that energy is carried away by recoiling atoms.

For the case of the power cross section, equation (5), we obtain, by 
inserting (10 a) into (7),

(15)

and, from (10 a) and (14),
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for 0 < æ < Il

0 otherwise.

(16)

It is easily verified from (16) that

1 f 2m
Or) = xF(x)dx = ---------11-,

E J 1 +2m— 00
<Zlrr2) <æ2) — <x)2 1
<x)2 0r>2 1 + 4zn

(17)

(18)

(19)

Eq. (17) states that the total amount of energy deposited along the whole 
trajectory is just the initially available kinetic energy, and (18, 19) deter
mine the center and the width of the distribution. The path length R(E) 
is an appropriate length unit to eliminate the explicit dependence on energy.

In fact, it will be seen in the following that, provided a number of sim
plifying assumptions can be made, the path length R(E) as given by eq. 
(15) is a length unit that determines the energy dependence of the extension 
of the collision cascade in all three dimensions. Hence, within the limit of 
the power cross section the shape of the cascade can be considered in
dependent of energy. This is one of the simplifying features of the power 
cross section.

The two major simplifications leading to eqs. (18) and (19) are the 
assumption of motion along a straight line, which breaks down for M1ZM2, 
and the neglect of energy transported a measurable distance away from 
the particle trajectory by energetic recoil atoms. Since the latter assump
tion becomes questionable for M1ZM2 we have to conclude that (14) is 
probably less useful than eq. (7).

Estimates of the type discussed in this paragraph are more successful 
al high ion energies when the slowing down of the ion is governed by elec
tronic stopping. Then, the ion trajectory becomes straightened out even for 
Mi « M2, and the recoil ranges tend to become relatively small as com
pared to ion ranges unless Mi » M2. Obviously, eq. (17) is no longer valid 
then. An estimate of this type has been made previously (Sigmund & San-
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DERS, 1967). Brice (197Ü) improved the procedure by taking into account 
energy loss straggling and path length correction as well as electronic energy 
loss by recoil atoms. Brice’s approach is feasible if none of the three cor
rections has a dominating effect on the distribution. The finite range of 
recoiling atoms was neglected.*

3. Basic Integral Equations

It is well known that the distribution of ion ranges in a random medium 
is determined by an integro-difl'erential equation of the transport type. The 
same is true for the distribution of deposited energy. There is, however, 
a major difference between the two distributions. For any single ion path 
the range distribution shrinks to one point, namely the end point of the 
ion’s trajectory. The distribution is then generated by repeating the slowing
down process a sufficiently large number of times with the same initial 
conditions. For any single ion path however, the distribution of deposited 
energy extends over a region whose dimensions are expected to be of the 
order of the ion range. If we repeat the slowing down process many times 
with the same initial conditions, these distributions will be superimposed to 
create a distribution that, in general, extends over a larger region in space. 
Hence, while the range distribution contains all information that can pos
sibly be obtained about the end points of the ion trajectories for random 
slowing down, the spatial distribution of deposited energy will in general 
not contain all possible information about the location of energy at the end 
of the slowing-down process: for example, one could also inquire about the 
energy distribution given the projectile’s path, or end point. Whether the 
information contained in the distribution function of deposited energy is 
sufficient depends on the specific experimental situation. If it is not, one 
has to consider correlation functions. These will be investigated in another 
paper.

Average Deposited Energy

We first consider a monatomic, random, and infinite medium charac
terized by an atomic number Z%, atomic mass M2, density of atoms N; and 
a projectile of the same type (z^2,M2) starting its motion at a point r = 0 
with a velocity v\ Only binary collisions are considered. The energy or 
damage distribution function, F(r,p), is defined so that F(r ,u)d3r is the 

♦Note added in proof: Comparison with recent results of P. Sigmund, M. T. Matthies, 
and D.L. Phillips (to be publ.) shows that for equal masses of target and projectile, Brice’s 
approach is valid for e )) 1.
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average amount of energy located in the volume element (Z,d3r), after both 
the projectile and all recoiling atoms have slowed down below a certain 
energy limit that is very small compared to the initial energy. In most nu
merical calculations in this paper we take this limiting energy to be zero; 
we discuss this assumption in a subsequent paragraph. It is implied that the 
time after which the location of energy is determined is long enough to 
ensure that energy no longer propagates any appreciable distance via col
lision processes, but short enough to prevent sound waves from carrying 
the energy away. (The time constant for slowing-down is of the order of 
10“13 seconds for keV ions, i.e. of the order of only one lattice vibrational 
period).

For the moment we neglect the binding forces acting on target atoms. 
Then, from the definition and energy conservation it follows that

J F(7,lT )d3r = E.

F(r ,v) satisfies the integral equation

V' = velocity of scattered particle; 
it" = velocity of recoiling atom;
do = differential cross section = KCvlit'lit")d‘'dt'(Fit" -, 

(20)

(21)

(21a)

(21) is analogous to the integral equation for the vector range (Sanders 
1968 a) and is also derived in the same way. The argument follows that 
of Lindhard et al. (1963a, b), and, briefly, is this. The distribution F is 
that due to a particle starting at the origin with velocity v. After this original 
particle has moved a short vector distance ÔR there is one particle at ÔR 
with velocity zZ, if no scattering has taken place, or, if a collision has taken 
place, with probability N\ôR\do, two moving particles, with velocities it' 
and It". The original distribution must be the same as the superposition 
of distributions with these new initial conditions. Thus, to first order in ÔR, 
and using the translational invariance of the medium,

F(7,7T) = AWIJda[FÇr^'} + F(7,7T")] + (1 - N|dFl Jdo'yFÇr - ÔR,lt) (22) 
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where the integrations are over all possible (binary) collisions. Expanding 
the second term on the right to first order in ÔR, and using ôR/\ôR\ = lt/v, 
we obtain eq. (21).

We now proceed to the case of a monatomic medium, characterized 
by Z2, M2, N, and bombarded by a projectile with atomic number Zi and 
mass Mi. We have to distinguish between the function F(~r~,~v) defined as 
before (i.e., for a bombarding target atom) and a new function F(i)(Fjr) 
that determines the spatial distribution of energy as a consequence of the 
projectile ion (Zi,Mi) slowing down from velocity It. Collisions between the 
ion and target atoms are described by a cross section do-(i), while da still 
describes collisions between target atoms. By the same argument as previ
ously we obtain

J F(i)( r jT)d3r = E; (23)

and

~ J^F(1)(r>’^) = - ^(ïstf'')]. (24)

The essential difference between (21) and (24) is that the former is 
homogeneous while the latter contains F(F,~v") as an inhomogeneity. This 
is a major complication of the computational work as compared to the 
range distribution F(R)(r~,~v) where we have (Sanders, 1968a)

I F{fi)( r\v)d3r = 1

- --^.F(R)(r~,~v) = 2V daw[F(R)(r,~v) - F(R)(t,F')] 
vor J

(25)

(26)

for either equal or unequal masses.
Next, we consider the case of a polyatomic medium containing atoms 

of type j ÇZj,Mj), (j = 2,3,4. .), where collisions between atoms i (striking) 
and 7 (struck) are described by a cross section dogj). We deline F^^Ç r , a )d3r 
as the average amount of energy located in the volume element d3r as kinetic 
energy of atoms of type 7, as a consequence of an atom of type i slowing 
down from a point r = 0 with initial velocity fT. By generalizing the previous 
argument we obtain

2 F<ij)(z^)d3r = E> (27)

and
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7,1t) - F(i/)( r,~v') - . (28)

Eqs. (27) and (28) are in general not sufficient to determine F 
uniquely. Also, the sharing of energy between the various components of 
the system may lead to conceptual difficulties, especially in solids. In many 
practical problems F(ij)(F,u) may not even be of interest. One may need 
only the simpler energy distribution functions 

J

that determine the location of energy irrespective of its distribution among 
the constituent atoms. These satisfy the following equations:

J F(f)(7,4T)d3r = E

and

- ~^.F&Çrjï) = ^(ik)[F(i)(T,~u) - F(i)Ç/,7t') - Fa)(^,^'')]

(27 a)

(28a)

which follow immediately from (27) and (28). Eq. (28a) represents a system 
of as many coupled integro-differential equations as there are components 
in the system. Once all F(/)(r>,n>) have been determined—which may be a 
cumbersome procedure—it is relatively easy to determine the function F(p 
determining the deposited energy in a poly-atomic medium bombarded by 
an ion (Zi,Afi) that is different from any of its components. We obtain

i.e. only one additional equation containing all F(k) as inhomogeneities. 
The corresponding equations for the ion range are

J F(JR)(Z,’iT)tZ3r = 1,

v dr
F(R)(r',~v) =

k
dk)[F(R)Çr^v} - F(R){rïu’')\. (26a)
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Special cases of (26a) have been considered by Sanders (1968a), 
Schiøtt (1968), and Baroody (1969).

A number of other authors have used integral equations of this type to 
investigate ion ranges (Holmes & Leibfried, 1960; Leibfried, 1962, 1963; 
Baroody, 1964, 1965; Leibfried & Mika, 1965) and damage distributions 
(Corciovei et al., 1962, 1963, 1966; v. Jan., 1964; Dederichs, 1965; 
Dederichs et al., 1966). All the work on damage distributions and part of 
the range work dealt only with the equal mass case. Furthermore, all of these 
investigations except the one by Baroody (1965) used hard-sphere or hard- 
sphere-like scattering in the numerical work. We have shown in an earlier 
communication (Sigmund & Sanders, 1967) that hard-sphere scattering is 
too poor an approximation to allow quantitative conclusions, and sometimes 
even produces results that diller qualitatively from those obtained with the 
(more accurate) power cross sections.

Finally we mention that the integral equations derived in this paragraph 
are rather general and apply also to situations other than heavy ions slowing 
down by elastic collisions. As long as the cross sections are not specified 
the equations apply as well to moving electrons, neutrons, etc., and the 
different components of the system in (28) may also be electrons on the 
one side and atoms on the other. In this case, of course, the conventional 
picture of a series of successive two-particle collisions is not necessarily 
applicable. For example, from one impact of an ion on an atom there may 
arise several energetic electrons. In such a case the recoil term FÇr~,~u") 
in (24) or any equivalent equation has to be replaced by ^F(v,)Çr,~v'v"') 

V
which is the sum of the contributions to F(r,v) of all particles originating 
from a collision (Lindhard et al., 1963 a, b). These more general cases will 
be dealt with in a later paper.

Deposited Energy: Relation to Damage Effects

In the foregoing paragraph we assumed that the process of dissipation 
of kinetic energy can continue to arbitrarily low particle energies, via binary 
collisions between freely moving atoms. Obviously, at low particle energies 
the effects of atomic binding have to be considered. We limit our discussion 
to a solid target, which may be amorphous or crystalline, the effects of regular 
lattice structure on slowing down being neglected. Two effects of potential 
energy appear to be dominant.

a) There will be a certain minimum energy W for a particle either to 
get displaced “permanently” from its original position or to displace other 

Mat.l’ys.Medd.Dan.Vid.Selsk. 37, no. 14. 2 
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atoms. This has the immediate consequence that the quantity E2m/NC is 
no longer a universal length unit, since e.g. W2m/NC also has the dimension 
of a length. IV may be a function of the position of the atom and its direction 
of motion. In the bulk, IV is the order of the radiation damage threshold 
energy Ea (~ 10 — 100 eV), while considerably smaller values of W are 
expected at and near the surface. The energy lost in subthreshold collisions 
(T < IV) will normally be converted into heat and thus not be of interest 
to radiation damage (except that subthreshold collisions may cause an
nealing of existing radiation damage). From the theory of displacement 
cascades it is well known that the number N(E) of permanently displaced 
atoms is of the order of N(E) E/2W for E » IV, IV now being a suitable 
average threshold energy (Lehmann, 1961, Sigmund, 1969 b, c). Thus, one 
would expect that, in the average, one atom will be displaced for each 
volume element containing an amount of ~ 2W of deposited energy. Pro
vided that the initial energy E » 21V, this volume element is much smaller 
than the total extension of the collision cascade. Hence, in the limit of 
E » IV, the introduction of a finite threshold energy IV should not affect 
the gross spatial distribution of deposited energy. This will be formulated 
more quantitatively in sect. 5. The close similarity to the spatial distribution 
of interstitials or vacancies can be formulated more quantitatively, too, if 
certain additional assumptions are made concerning the displacement pro
cess (Dederichs, 1965; v. Jan, 1964; Sigmund et al., 1968).

b) Upon leaving its rest position, an atom will in general lose an amount 
of energy U that may depend on position, energy, and direction of motion 
of the atom. U may be of the order of the cohesive energy or less. Also, 
the lattice may be left in an excited state, so that some of the lattice poten
tial energy is converted into kinetic energy of the atoms surrounding 
the initial position of the displaced atom. Although one could in principle 
define the deposited energy function F(r,7t) in such a way that energy is 
conserved, so eq. (20) holds, it is more convenient not to include the above 
amounts of potential energy in the energy balance. Then, of course, eq. (20) 
does not hold. The energy defect can be found by counting the number of 
recoil events in which potential energy is converted. For example, let us 
assume a sharp threshold energy IV as defined above, and let a particle 
stop dissipating energy as soon as its energy is below IV. Let us further 
assume that a recoiling atom loses a fixed amount of energy U upon leaving 
its initial position. Then, the total number of atoms that recoil with an 
energy in the interval (Eo,dEo) in a collision cascade initiated by an atom 
of energy E is given by (Sigmund, 1969c).
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F(E,Eo)dEo =
zu

y)(l) - y>(l - m)
E

(Eo+ W)x~mEx + m
dE0, (29)

for E » Eo » U assuming the scattering to be described by the power cross 
section eq. (5). The function y>(.x) = (d/drr) In F(x) is the digamma function.

The total amount of kinetic energy lost during slowing down to VV is 
then given by

f (1 + U/W)m - 1AE = U • F(E,Eo)dEo = \ /------ -E. (29 a)
J y(l) - t?(1 - m)
w

Depending on the ratio of U/W, AE can be a sizable fraction of E. If U/W 
is small, the fraction AE/E is of the order of U/W. However, even though 
this energy defect may not be negligible when the amount of deposited 
energy is considered, the spatial distribution is hardly affected at all, since 
eq. (29) clearly shows that the great majority of these energy quanta U are 
lost by atoms recoiling with very low energy Eo, i.e. that do not affect the 
spatial distribution. In fact, for Eo » U we have an ~ Eq2 recoil density. 
This point also will be elucidated more quantitatively in sect. 5.

Apart from the effects of potential energy, another limit is imposed on 
the energy dissipation when essentially every atom within the cascade 
volume is set in motion with a sizable energy. This defines a limiting energy 
E* of the order of ~ E/NQ, where Q is the volume covered by the cascade. 
Rough estimates indicate that E* is usually small compared with W, so 
this effect will be assumed negligible in the following.*

The above discussion concentrated on the spatial distribution of displaced 
atoms, as characterized by a threshold energy W. Obviously, the argument 
also applies to the spatial distribution of recoils with energies different from 
W, for example, those described by the recoil density F(E,Eo) of eq. (29), 
and to the slowing-down-density that dominates the numbers of atoms 
moving in a certain energy interval under steady-state conditions. The lat
ter quantity is of great use in sputtering theory (Sigmund, 1969 a). In fact, 
the number of atoms moving with an energy greater than the sputtering 
threshold energy is proportional to the total energy, but the fraction of those 
that are close enough to the target surface to be sputtered is determined by 
the energy deposition function. Also the spatial distribution of the collision 
density can be reduced to the deposited energy distribution, provided that

♦Note added in proof: E* can become comparable to W for very heavy ions in the lower 
keV region. Presumably, this affects the number of atoms set in motion (recoil density) but 
hardly the spatial distribution.

2*
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the collision density is defined to count all collision products in suitable 
energy intervals (Sanders, 1966, 1968b; Robinson, 1965b; Kostin, 1965; 
Felder & Kostin, 1966). Various concepts of collision density have been 
introduced in the literature; a discussion of their physical significance is a 
delicate task, but not the subject of this paper.

Finally, we mention that the assumption of complete randomness of lhe 
system under consideration is not necessarily applicable to crystalline tar
gets. The assumption is not valid when single crystals are bombarded under 
channelling conditions, and even in polycrystals, or single crystals bom
barded in a “random” direction, there is a possibility for scattering of ions 
and recoil atoms into a channel, and of linear collision chains travelling 
over a distance exceeding that for random slowing down at the same energy. 
It is implied that random-slowing-down theory holds approximately only 
when these lattice effects are rare, or when the corresponding ranges 
are small compared with the total extension of the collision cascade. Ob
viously, the significance of these lattice effects depends on the target, damage 
state, ion dose, and irradiation temperature.

Probability Distribution of Deposited Energy
It was mentioned earlier that the distribution function F(r\ v ) and related 

quantities do not contain all possible information on the distribution of deposited 
energy. At present we go only one step further and derive an equation for the 
probability distribution of deposited energy, of which F(r,y) is the average. We 
define the function G(r,v,P) in the following way.

G(r,v,P) dP is the probability that an amount of energy between Pdzr and 
(P + dP)d3r is deposited in the volume element (r)d3r), by a projectile starting 
with velocity y at r = 0, and all generations of recoiling particles.

Obviously G has to be normalized:

J G(r,v,P)dP = 1. 

o
The average energy deposited in (r,d3r) is then

(30)

so

00

j (Pd3r)G(TXP)dP = F(~r\~vyFr,

P = 0
00

F(r,v~) = J PG(r ,v\P)dP

o

(31)

where F(r,c>) is the function defined by (20) and (21) with IT finite or zero.
By use of the argument leading to (22) we obtain the following equation for 

G (r\~v\ P) :
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p

(32)

The first term on the right side expresses the fact that the total energy deposited 
in (r,d3r) by the scattered projectile and the recoiling particle must sum to P. 
Letting ÔR go to zero we obtain

da G(~r",v^,P)
p

J dQGÇr/v',Q)GÇr^v'",P - Q)

o

(33)

We want to derive eq. (21) from (33). Multiplying (33) by P and integrating over 
P we obtain, by use of (31)

(34)

Substituting P P + Q in the second term on the right side in (34) we obtain

0 0

00 00

Q)G(T, iT', Q)GÇr,~v", P) (35)

using (30) and (31). Inserting (35) into (34) we arrive at (21).
Eq. (33) could easily be generalized to all the cases discussed at the beginning 

of this section. This is merely a matter of notation.

4. Equations for Spatial Averages

There are several methods available to find approximate solutions of 
integral equations of the type derived in the preceding section. These are 
reviewed in textbooks and review articles on slowing down of neutrons, 
penetration of X-rays, etc. But even in the highly simplified case of hard- 
sphere scattering it has not been possible to find the exact solutions. It is, 
however, possible to calculate exact expressions for averages over the dis
tribution functions, for a certain class of cross sections including the power 
cross sections specified in (5). We shall, therefore, calculate averages first, 
in order to have a solid basis for comparison with experiments, and try to 
construct distribution functions from the averages, rather than attack di
rectly the equations for the distribution functions. The derivations in the 
present section are based on standard methods developed several decades
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ago in other penetration problems and used also in the theory of ion ranges. 
We sketch the derivations for completeness and because of some slight 
differences from the equations occurring in other problems.

Plane Monodirectional Source

In experiments with ion beams one has a more or less monodirectional 
source of projectiles, hitting a target with a more or less planar surface. It 
is convenient to solve the integral equations for planar geometry. This de
termines the depth distribution of the deposited energy.

Let us assume a coordinate system with the x'-axis perpendicular to the 
surface of the target, and a plane monodirectional source at x = 0. Then 
F(~r\v) does not depend on y and z so (20) and (21) read

F(xJj)dx = E, (36)

d _ c ->
— cosO — F(x,v ) = Al do[F(x,v ) — F(x,u ') — F(x,v ")], (37)

dx J

where F(xîv}dx = dx $F(~r\~v)dydz is the energy deposited in the layer 
(x,<7x) on the average by one projectile starting in the plane x = 0 with 
velocity TT, and cosO = 77 is the directional cosine of v with respect to the 
x-axis. Note that (37) still requires the medium to be infinite, and that the 
“surface” at x = 0 is only a reference plane. Whether our results apply 
to a target with a real surface depends on the importance of scattering back 
and forth through the plane x = 0.

For an isotropic medium, F(x, v) cannot depend on the azimuth of v 
with respect to the x-axis. Hence

F(x,”p) = F(æ,£,?7) = 2 (2/+ l)Fz(x,F)Pz(^), (38)
z = 0

after changing from velocity to energy variables, and expanding F in terms 
of Legendre polynomials. The factor (2/ + 1) is included for convenience. 
The coefficients Fi(x,E^) are then given by

1

Fi(x, E) = - dr]b\x,E,T]')Pi(r]')
-1

(38 a)
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Integrating (38 a) over x, and taking into account eq. (36), we obtain

00J dxFi(x,E) = ôioE.
— 00

(39)

Eq. (37) will now be reduced to a set of equations for the Fz(æ,E). On the 
left side we employ the recurrence formula for Legendre polynomials, so 
that

- 5 ~ F<(æ. E) ■ [(/+1 +i(>î) + IPi -!(»;)]
I Ox

d d
I Ft-^E) + (! + l)-~Fi + 1(x,E) 
.ox OX

(40 a)

The first integral on the right of (37) is given by

(40 b)

while the second,

has to be transformed in such a way that r), not r/', is the variable in Pi(tj'). 

rj' is the directional cosine of ~v' with respect to the x-axis. We can express 
the cross section for elastic collisions by

(41)

where e = ~v'lv,~e' = ~u'/v' and (p' is the laboratory scattering angle of the 
projectile, a function of E and T. We expand the ô-function,

00

<5( e • e ' — cos 9/) = 2
i = 0

2/ + 1
—-—Pi(e -e )Pz(cos<p), 

and insert the addition theorem for spherical harmonics,

/z 2/ + 1
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where TZ(<(e) are spherical harmonics in the notation of Schiff (1955). 
With the x-axis as a reference axis, the integral over ~e' can be performed 
and yields

+
z

l)xVj dor(E, T) Ih (cosE - 7’)7jz(t?). (40 c)

A similar calculation for the third integral in (37) yields

where <p" is the laboratory scattering angle of the recoiling atom. Collecting 
equations (40a-d) we obtain

- I - (/ + 1) £fz + i(x,E) = (2/+l);Vp<r(E,T)
(42)

• [Fi(x, E) - Pi(cos(p')Fi(x,E - T) - Pi (cos (p"}Fi(x, 71)].

Spatial averages over the distribution function F(x,y) are obtained by in
tegration of (38),

= f (2/+ pFz^E)^),
i = o

where

dxxn Fi (x, F).
— QO

So, by integrating (42),

n/FjV/Cfi) + n(l + - (21 + 1)ïvJ</<7 

■ [Fin(E) - P^coscp'yF^E -T) - Fz(cos?>")Fz«(T)].

(43)

(43 a)

(44)

Using the notation of (43 a), (39) reads

FZ°(E) = <5Z0E. (45)

Thus (44) represents a system of integral equations that can be solved 
stepwise with increasing n, the case n = 1 being defined by (45). Obviously, 
for n = 1 only the moment F}(E) is different from zero since, because of 
eq. (45), eq. (44) is homogeneous for n = 1 and 1^1. Similar arguments 



Nr. 14 25

apply to higher order moments. It turns out that F” 0 only for I < n 
and / +17 even. Thus, the sum (43) is always finite.

Eq. (44) has been derived from (21) for the simplest of the distribution 
functions discussed in the previous section. Generalization to other func
tions is a matter only of adding the right indices. For example, (23) reduces

nZF(1)?ji(E) + n(Z+l)F(1)»;J(E) - (2Z + 1)jvJ Ar(1) 

• [F(1)?(£) - (cos - T)

-ZJ1(cosy"(1))Fi”CZ’)].

(46)

where <p (i) and (p"(i) are laboratory scattering angles for Mi Mz, and 
F(i)”(E) derives from FqjfrTiT) in the same way as F;n(F) from F(~r~,'v~'). 
Furthermore, from (22) and (45),

F(i>?(£) - ålaE. («)
If the last term on the right side of (46) is omitted one obtains the equa

tion for the moments of the projected range distribution. Eq. (47) has then 
to be replaced by F(i)p(E) = ôio. This system of equations has been studied 
by Baroody (1964, 1965).

Point Monodirectional Source

If one is interested in the extension in three dimensions of collision cas
cades it may be more convenient to consider a point source. This case has 
been studied by Corciovei et al. (1962, 1963, 1966), v. Jan (1964), Dede- 
richs (1965), and Sanders (1968), as well as in our previous communica
tion (Sigmund & Sanders, 1967), and in all the range work quoted pre
viously, with the exception of Baroody (1964, 1965, 1969). A general rela
tion between the solutions for plane and point sources has been derived 
by Berger & Spencer (1959), and is quoted in Appendix C. We remind 
the reader that does not in general determine the dimensions of a
single cascade but those of the region covered by a great number of cascades 
with the same initial conditions.

With a point source at r = 0, the initial velocity vector ~v is used as a 
reference axis X. The Y and Z axes are perpendicular to v.

We expand 
F(7,-iT) = J(2Z+ l)/z(r,E)A(C), 

i

where £ = (^‘y )/(ry)- For the moments

(48)
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r2 + n([r

O

(49)

we obtain the following set of equations:

/(/ + n + l)/^1^) + (Z + l)(n - Z)^"!1^) = (2/ + 1)^do

[/?(£) - Pz (cosç>')/•;«(£ - T) - Pi (cos 9>")/i~(T)],
(50)

and the normalization condition

A°(F) = E. (51)

The /'^(E), I 0 are not prescribed, in contrast to (45). However, those 
moments ftn(E) that can be calculated recursively from fo(E) determine the 
spatial averages J A^ PZ* F(’r",lT)cZ3r for integer i,j,k > 0. From (48) we 

obtain

J Xiy^Z*F(Z,‘n)(Z3r = £(2Z + l)fii+} + k'

2 71
1 cx tZ/cos

2 7T J
0

which can be readily evaluated. The resulting general expression looks more 
complicated than it is so we list the first few examples:

J X FÇr\ft) d3r = A1^); (53 a)

J y F( r^TT) cZ3r = J Z FÇr^v)d3r = 0; (53 b)

f Ar2F(F,7()d3r = ^(E) + }f22(E); (53c)

J y2 F(7,lT)cZ3r = fz2FÇF^)d3r = jf02(E)-jf22(E); (53 d)

JxyF(7,lT)d3r = 0; (53 e)

(X3 F(r,~v)d3r =: |A3(F) + f/33(F); (53 f)

XY2F(r,v')d3r = tA3(^)-R33(^); (53g)
etc.
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Again, of course, by adding a number of indices we could easily gen
eralize these results to the more complex cases of an impurity ion or a 
polyatomic medium.

5. Evaluation for Power Cross Sections

Lindhard et al. (1963 b) have shown that moments over the range dis
tribution can be calculated by exact integration if the power cross section 
(5) is used. Sanders (1968) has shown that the same is true for moments 
over the damage distribution, and some numerical results have been pre
sented in an earlier communication (Sigmund & Sanders, 1967). In this 
section we first discuss the method and then present some numerical results.

First Order Moments: Equal Mass Case

Equation (44) reads, for n = / = 1,

F0°(E) + 2F2°(E) = 3ArJ d<r[Fi1(E) - cos/Fi1^ - T) - cos <p" Fi\ T)]

or, after inserting the cross section da from (5), the zero order moments 
from (45) and the laboratory scattering angles

cos9?' = (1 - T/E)1/2, cos ç?" = (TIE)1/2, (54)

E = 3NCE~™

-(T/E^F^T)].

Before solving (55) we investigate the boundary conditions imposed by a 
threshold energy W, as introduced in sect. 3. For planar geometry, and
neglecting the energy loss U for the moment, we have

(56)F(a?,7T) = Eô(x) for E < W,

so, by use of (38) and (43),

Fin(E) = ôioônoE for E < W, (57)

(55)
J T~1~mdT[F11(E) - (1 - T/E^F^ÇE - T)

i.e. Fii(E) = 0 for E < W.
We first treat the case W = 0. With the ansatz
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Fi\E)
Ai1__ jVl + 2rø
NC

where Ai1 is a constant, we obtain from (55)

where now

1

/-i-m J/[l - (1 - 03/2 + 27»

0

£3/2 + 2m

t = T/E.

The integrals are easily evaluated and yield

3A11 = - — - B(- m, 5/2 + 2m) - — - - 
m à/2 + m

B(x,y) is the beta function (Abramowitz & Stegun, 1964),

i

= J d/F-1(l - t)v~x
o

r(æ) r(y)
+ y)

(58)

(59)

(60)

(61)

Because of (45) all other moments Fj1(F) are zero so, by use of (43) 
and (36), we obtain the “average damage depth’’

LrcteF(x,iZ) 3^1
= —----------------  = — -F2mcos0, (62)

J dx F(xïv) NC

where 0 is the angle between the beam and the x-axis.
This is to be compared with the average projected range that was first 

calculated by Lindhard et al. (1963 b) and is, in the present notation,

where

3A<æ>(jR) = -- ^L^£27»cos0
NC

3A{R)F
1

-------B(- m, 3/2 + 2m) 
m

Note that, because of the different normalization condition of the range 
distribution, we have
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i.e. an energy dependence that is different from that in (58).
We now consider the case W > 0. It is then no longer possible to cal

culate the complete Fi1(E) explicitly, but the asymptotic form for E » IV 
can be found by Laplace transform, as was shown by Robinson (1965a) 
on a similar integral ecpiation. Introducing the logarithmic variable u = In E/W 
in (55) we obtain, by following Robinson’s method, the following expression 
for the Laplace transform Fj(s) of Fj(E(zi)) with respect to u:

where

mW1 + 2m 1
3NC (s-1-2zn)(l-2z/(s+1/2))’

ml 1 jT(1 - nï) r(s + 1)
2 s — m 2 I\s + 1 — in)

(63)

It appears difficult to express the inverse Laplace transform of (63) in 
terms of elementary functions, but it is easy to evaluate the first two terms 
in an asymptotic expansion in powers of E/W. These arise from the two 
poles at s = 1 + 2m and s = 1 /2 in (63). We then obtain

AilFWL) ~ — E1 + 2™------ £1/2^71/2 + 2^ for E » IV, (64)
v ' NC NC

where Ai1 is identical with the expression calculated before, eq. (60), and

3Â11 =
711(1 — 771)
1/2 + 2th

1
V(!) - V(! - m)’

(64 a)

y(x) = — In F(.r). Thus the first correction term for IV 0 is smaller where 
dx

than the main term by a factor of the order of ( W/E)1/2 + 2m. For m > 1/4 
this factor goes more rapidly to zero than W/E. This means that IV can 
usually be neglected when E is in the keV region, and the error made can 
be estimated from eq. (64).

A similar calculation shows that the correction in the average projected 
range due to a threshold IV is proportional to E~112, i.e. again smaller by 
a factor of the order of (IV/E)1/2 + 2w than the leading term. Of course the 
numerical factor Âi1 is different from the one given by (64 a).
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Introduction of an energy loss U of the recoiling atoms, as discussed in 
§ 3, has two consequences. First, since energy is not conserved, the left
hand side of eq. (55) is replaced by E - HE. Because of eq. (29 a), this 
means that for E » U ,W, the left-hand side of eq. (55) remains linear in 
E. Hence, because of eq. (62), the average <æ> is not affected. Second, the 
recoil term Fj(Y’) in eq. (55) is replaced by F^(T - U). It is, then, possible 
to establish an asymptotic expansion of F}(E) in powers of U/E, where (62) 
is the leading term. Higher terms can be neglected for E » U.

First Order Moments: Nonequal Mass Case

Equation (46) reads, for n = I = 1,

E = 31V f c?o-(i)[F(i)i1(E') - cosçqi/Fd)!1^ - F) - cosç>(i)"Fi1(T)], (65)

where (47) has been inserted on the left side. The laboratory scattering 
angles çqi/ and are given by

cos^i/ = (1 - F/E)i/2 + a_(i _ 77F)-i/2 (66a)
E

and
cosçqij" = y-1/2(T/F)i/2 (66b)

for elastic collisions, where
1

a = —(1 — M2/M1). (66c)

The cross section c/cqi) is given by

da{1) = C{1)E~m^'>T'~1~m^dT, 0 < T < yE (67)

where in general, C<i) and npi) are different from C and in. We shall assume 
in the following that

m<i) = m, (68)

i.e. the same power in the cross section for both types of interaction. This 
is a gross simplification, the validity of which will be discussed in the fol
lowing chapter. Accepting (68) for the moment, we can make the ansatz

FWi\E) = -^-Ei + 2^ (69)
NC(i)

and, inserting both (58) and (69) into (65), we obtain
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3 Cm rdt
1 + 3/2 + m A11 C yl + m = 3A(1)1J ~ti + m t1 ~ C055^1«1 - 01+2m]. (69a) 

o

The integral is easily evaluated after inserting (66a) and we get

3

(70

(71)

note that

2(1-771)C(l)

c

or, with the approximation Zz/Zi = M2/M1 =

1-777C(l)
(72)

Eq. (70) determines Aqji1, since A11, Cp), and C are known. We 
from (5 a)

where By is the incomplete beta function,

y
By(x,y^) = J* dl Z2:“1(l - f)y_1.

0

Cm I y 71 +—-------+ - = 3A(1)1i -y—
3/2 + m C I m

/ 2
a \i + u

It may be appropriate to make a remark on the convergence of the above 
integrals. Eq. (70) follows directly from (69 a) provided m < 0 so that each 
term in the integral converges. Eor 0 < m < 1, it is readily verified that the 
integral as a whole converges, while divergences occur in two terms at 
t = 0. The divergence can easily be removed by partial integration, but 
this would make (70) look more complicated. Instead we understand (70) 
for 0 < m < 1 as the analytical continuation from the region m < 0.

First Order Moments: Two Different Power Cross Sections
There is no basic obstacle against treating the case m ^(1), and in fact, tlie 

solutions of (65) can be found by straightforward calculation. However, it is highly 
desirable to make use of the simple power laws of the type of (69), as long as this 
can be justified. The main advantage is, as has been seen, that all lengths are propor
tional to E2m!NC(\) and there is complete similarity of all distributions over the
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energy range where the power cross section in question is valid, so that the only 
numerical work to be done is the calculation of various factors. In the case m m(i), 
(69) is no longer valid.

Let us assume a primary particle 1 with energy E that slows down by a power 
cross section characterized by m(i). Recoil atoms have energies T up to Tm = yE. 
There is formally no lower limit for T, but for the stopping only recoils with, say 
T > Yoo are imPortant. Thus

Loo^ < T < yE (73)

is the energy range of interest for recoiling atoms whose scattering is characterized 
by a power m in the cross section. Whether eq. (68) is a reasonable assumption 
depends on the values of T and E in dimensionless units. We introduce two dif
ferent energy units,

(73 a)

which both follow from (1 a), t applying to the equal-mass case. Hence (73) reads

where
----- ex(zz) < t < e-x(u),
100

2
/z(f + n)

J/|(1 +/Z-2/3)

(74

(74 a)

and /i = M2/M1 «s Z2/Z1. Figure 4 shows that the function x(/z) varies rapidly 
with fj., so that primary and recoil energies can differ by several orders of magnitude 
when measured in dimensionless units. Now, let us first assume that M2/Mi < 1, 
say M2/Mi = 1/4 so x(/<) = 8.5, according to Fig. 4. Then 0.1 e < r < 8.5 s. 
Hence the distribution of r values centres around e on a logarithmic scale, with a 
spread of a factor of 10 to both sides. Thus one seems justified in assuming that 
primary and secondary particles obey similar scattering laws, m fa m(i). If M2/M1 
is considerably smaller than 1/4 the ratio r/e will be greater. Thus in extreme cases 
it may become necessary to assume m > m(i). Let us now assume M2/M1 > 1, 
say M2/Mi = 4, or x(/z) = 0.083. Obviously the distribution of r values ranges 
from ~ 0.1 e down to — 0.001 e, i.e. we will have in general m < m(i) for Mi << m2. 
However for Mi (< M2 the ranges of recoiling atoms are small, so the recoil term 
is negligible. This can be seen from the fact that the term containing the factor 
C(i))/C in (69a) goes to zero as for /i >) 1.

We conclude that assumption (68) is justified for Mi )> M2, while for Mi (( M2 
the choice of m does not affect the calculated quantities. For Mi fa M2 neither 
argument applies. Therefore we consider the case Mi = M2 more quantitatively. 
Going back to (55), one way to solve the problem would be to assume that the primary 
particle of energy E has a scattering law with m = mi, and secondary particles, 
with energy T, have m = m2, where m2 < mi since T < E. This is, however, 
unsatisfactory, because a measurable fraction of all recoil atoms do have energies 
of the order of E. Instead, we assume the following consistent picture: introduce an 
arbitrary energy Ei and assume that whenever an atom (primary or secondary)
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Fig. 4. The function x(/.<) defined in (74 a), as a function of mass ratio.

has an energy below Ei the cross section is given by m = mi, while for energies 
> Ei we have m = m2 (> mi). Then, of course, Fi1(E) is given by (58) for E < Ei, 
with C = Ci and m = mi in (60). For E > Ei, the integrations in (55) have to 
be split into the regions E < Ei, and Fix(E) inserted as a known inhomogeneity 
for E < Ei. Eq. (55) can then be solved by Laplace transform, just as in the first 
chapter of this section, with Ei substituted for IV. The resulting expression contains 
(58) as the leading term with the highest power of E with m = m2 and C = C2, 
while the first correction term goes as E1/2, i. e. can usually be neglected in com
parison with £i + 2mt. Thus (58) holds both for E < Ei and E > Ei, with the 
respective value of m inserted in each energy region. Since this is just what was 
assumed above we conclude that even in the case Mi = M2, where the assumption 
(68) was least justified, one is indeed allowed to make it. The result of this paragraph 
may seem trivial to the reader, but one should be cautious. There are other, similar 
integral equations (Sigmund, 1969a, 1969b) where exactly the opposite result is 
true. The choice of the power m is a major problem that has to be considered with 
great care whenever power cross sections are used.

Mat.ï’ys.Medd.Dan.Vid.Selsk. 37 no. 14. 3
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Higher Order Moments

Iligher order moments (n > 2) can be calculated in a similar way as 
first order ones. We set W = £7 = 0 from the beginning—which choice 
could be justified in the same way as for n = 1—and also choose a single 
power m in the cross sections da and dap).

Equal-Mas Case 
Equation (44) reads, with the cross section (5),

1 
f d/ r

dFzw(E) = (21 + 1)NC E~2m ------ \Fin(E) - Pi (cosy )Fin(E(l - £))
J t1 + m

o

- Pi (cos <p") Fin (Et)],
where

AFin(E) ■ nlF^E) + n(Z + 1 ZF,”-,1 (E). (75a)

With the ansatz
(E2m\nFlKE) . A^-} , (76)

(45) becomes
Aj° = ôio, (76a)

and (75) gives
AAin

(77)(21 + l)Zzn’
where

f d7 r
hn = - 1 -J P + ™1 Pi(\ 1 - /)(! - t)2mn + l - Pi([ t)t2mn + 1]. (77 a)

AAin is defined in analogy to (75 a),

AAin = n/Af-Ÿ + n(l + (77 b)

Thus it depends only on the A”-1. Hence the problem has been reduced 
to evaluating the integrals Itn. As before it is easily verified that/;” as a whole 
is convergent for m < 1, so it is legitimate to evaluate Iin first for m < 0, 
where each of the three terms is finite, and then continue the result to the 
region 0 < m < 1.

For m < 0 we can write
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1
- ----------Jin-Kin

m
(78)

where

J,n - J“ 'X1 ■ o2“"+1. (78a)

and
0

K,n ~ (78b)
0

The two integrals are reduced to readily calculable forms in Appendix A. 
It should be mentioned that in a previous communication (Sigmund & 
Sanders, 1967) we evaluated Jin and Kin in “the pedestrian way”, i.e. by 
inserting Pi, and evaluating the resulting beta functions, first for n < 3 and 
later for n < 5. This is perfectly justified for small n. In the present work 
we evaluate Ain up to n = 20 and in this case one has to make the accumula
tion of errors in the recurrence procedure as small as possible. The method 
described in Appendix A is one of several procedures that have been tried. 
Since it is the simplest one, we have confidence that the results are accurate. 
In the most important lower moments (n < 3) agreement is found between 
the results computed by various methods and our previous results obtained 
with the desk calculator.

Non-Equal Masses
With the cross section dcrq) = C~mdT, (46) reads

V
AFml\E) - (2Z+l)NC(1)E-2-»J^[F(1)1»(E)

0
Pz(cos9?(i)') x

x F(i)ZTO(E(l - /)) - Pi (cos 99(i)”) Fin(Ef)\

(79)

Inserting (76) in the last term on the right side we obtain, with the ansatz

Fq)in(E)

dinA(1)in =

/ ]?2m \n
- A^nE\^ ■ (80)

(81)

3*
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where

and

din

</*” = J pT^P^C0S9?(1) X1
0

-02mn +1

(81a)

(81b)

(81c)

From (78b) and (81c), (75b) and (79a), we get

Also, from (47)
in = yl + m (2n-l)

A(1)Z° = ÔiQ.

(82)

(83)

Thus, given the Ain, the computation of A(i>” is reduced to evaluating inte
grals. The ^in are evaluated in Appendix A.

Range Calculations

Moments over the ion range are calculated with the same program, the 
differences being the following:

i) There are no Kin or Jfz” terms, since the recoil term is absent in (25).
Hence it is not necessary first to evaluate the equal-mass case.

ii) Because of the different normalization condition (24), the exponents of 
(1 - t) in (78 a) and (81 b) are 2mn, instead of 2inn + 1. The extra factor 
E in (76) and (80) disappears.

Polyatomic Targets
The extension to polyatomic targets is easily done by adding the appropriate 

indices and summing over the various components. Because of the difference in the 
values of e, power cross sections are not applicable when the constituents of the 
target have extremely different masses. Consider (28 a). We define

Nt = azN, (84)

so that aj is the fraction of atoms of type i (z = 2,3. . .). Following the procedure 
of the previous sections we obtain the following expression for the moments over 
the function Fp)(r,ü):
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Table I. Coefficients Ain, defined by (76), for Mi = M2 and various values 
of m. (Note that in case of the range distribution the extra factor E in (76) 

has to be dropped).
(Ia) Deposited Energy: Nonvanishing Coefficients Ain for n < 5.

m = 2/3 th = 1/2 m = 1/3 TH = 1/4 TH = 1/8 m = 1/16

A0° 1.000 1.000 1.000 1.000 1.000 1.000

A? 5.19910-2 9.831 io- 2 1.68510-1 2.18810-1 3.30710-1 4.17010-1

Ao2 1.29710" 2 4.91610-2 1.57210-1 2.87110-1 8.77710-1 2.149

a22 3.92110" 3 1.41910- 2 4.04310-2 6.56310-2 1.34910-1 1.95810" 1
A i3 1.8801Q-3 1.41510-2 7.81310-2 1.83010-1 8.19510-1 2.517

A33 3.40410-4 2.42010-3 1.1531Q-2 2.32010-2 6.27510“ 2 1.01710-1

A04 6.1 OOio- 4 9.58310-3 9.91 liQ- 2 3.2031Q-1 2.689 1.485101

A24 2.64410" 4 4.02110" 3 3.81510-2 1.12610-1 6.85310"1 2.408

A44 3.15810-5 4.5301Q-4 3.66210- 3 9.16210-3 3.25410-2 5.88010-2

A^ 1.27510-4 4.16910-3 7.68610-2 3.21710-1 3.979 2.763101

A35 3.61510-5 1.13210-3 1.85610-2 6.8571Q- 2 5.51310-1 2.145

A55 3.03110-6 8.99210" 5 1.2561Q-3 3.93310-3 1.85210-2 3.7651Q-2

(Ib) Range: Nonvanishing Coefficients Ain, for n < 5.

m = 2/3 771 = 1/2 771 = 1/3 TH = 1/4 777 = 1/8 777 = 1/16

Ao° 1.000 1.000 1.000 1.000 1.000 1.000

A? 6.79910- 2 1.22910“ 1 1.99110-1 2.50010-1 3.56210“ 1 4.33610"1

Ao2 2.07210-2 7.37410-2 2.16810“1 3.75010" 1 1.031 2.352

a22 5.88110-3 1.993iq-2 5.229^q- 2 8.07710-2 1.51910-1 2.08910“ 1
A13 3.33910-3 2.33110-2 I.I6610-1 2.56110-1 1.010 2.840

A33 5.5591Q-4 3.6501Q-3 1.57410-2 2.98410- 2 7.25110-2 l.lOlio-l

Ao4 1.21110-3 1.75510-2 1.6261Q-1 4.88910“ 1 3.533 1.748101

A24 5.04410-4 7.05110-3 5.98610“ 2 1.64510-1 8.69810"1 2.770

A44 5.46810- 5 7.16710-4 5.17610-3 1.21110-2 3.81510" 2 6.41510-2

A15 2.70610- 4 8.11010“ 3 1.3291Q-1 5.14510-1 5.414 3.333101

A35 7.25810-5 2.07310-3 3.01010-2 1.03010-1 7.12510-1 2.497

A55 5.47610-6 1.47210-4 1.81810“3 5.29110-3 2.19010" 2 4.12310-2
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Table II. Coefficients A (i)in> defined by (80), as functions of mass ratio 
Mz/Ah.

(Ila) Deposited Energy: m = 1/2.

M2IMr 1/10 1/4 1/2 1 2 4 10

A (1)0° 1.000 1.000 1.000 1.000 1.000 1.000 1.000

A(l)l1 2.30510-l 1.63010-1 1.25410-1 9.83110*2 8.02010-2 6.58810“ 2 4.76110-2

A (l)02 2.905jq-1 1.43410-1 7.97810-2 4.91610* 2 3.80110*2 3.37610*2 3.07710-2

A(l)22 8.032|q- 2 4.0081Q- 2 2.32810" 2 1.41910*2 9.2661Q-3 5.92910-3 2.89010- 3

A(i)l3 2.37410-l 7.86410" 2 3.0091O- 2 1.41510*2 9.38610" 3 7.00110-3 4.60110-3

A(l)33 3.52110-2 1.21610-2 5.18010-3 2.42010-3 1.2361Q-3 5.96710-4 1.91110-4

A (l)04 5.92310"1 1.23110-1 2.80210" 2 9.58310-3 6.2561Q-3 4.97610* 3 3.91 lio- 3

A (1)24 2.13710" 1 4.59110-2 1.14810-2 4.02110-3 2.19610-3 1.2881Q- 3 5.6931Q-4

A(1)44 1.83310" ~ 4.25710-3 1.28310- 3 4.53010-4 1.77610*4 6.34810“ 5 1.32110-5

(lib) Deposited Energy: m = 1/3.

M2/Mi 1/10 1/4 1/2 1 2 4 10

A (1)0° 1.000 1.000 1.000 1.000 1.000 1.000 1.000

A(l)l1 3.77610-1 2.67810" 1 2.12310-1 1.68510*1 1.33810-1 1.07410-1 8.05610- 2

A(i)02 6.34710-1 3.57310-1 2.3821Q-1 1.57210-1 1.14210-1 1.OO210-1 1.05510-1

A(i)2e 2.07810" 1 1.03210" 1 6.4681Q-2 4.04310-2 2.52910*2 1.60510-2 8.84210-3

A(i)i3 6.36410" 1 2.7011Q-1 1.46810-1 7.81310-2 4.74210-2 3.50410-2 2.76410-2

A(i)33 1.38710-1 4.79010-2 2.35910" 2 1.15310-2 5.63210*3 2.80510*3 1.12710-3

A (] )o4 1.359 4.91110-1 2.24610* 1 9.91 bo- 2 5.7551Q-2 4.71310"2 4.98710-2

A(i)24 6.47310-1 2.04610-1 8.98310* 2 3.81510* 2 1.87810-2 1.11110-2 6.32510*3

A(l)44 1.0481Q-1 2.50710-2 9.65010* 3 3.6621Q- 3 1.39010-3 5.41310-4 1.583jq- 4

/£2rø\n
F = G(i)znE'l , (85)

where C is an average C value defined in some arbitrary way, and the G(i)in are 
found from the following system of equations:

21 + 1 = 2a* - G(k)in^(ik)in}.
k G

(85 a)
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Table II (continued). Coefficients A up”, defined by (80), as functions of 
mass ratio Mz/Mi.

(lie) Range, m = 1/2.

m2/m1 1/10 1/4 1/2 1 2 4 10

A(l)0° 1.000 1.000 1.000 1.000 1.000 1.000 1.000

A(l)l1 2.8O5lo-i 1.92210-i 1.51110-1 1.22910' 1 9.90410' 2 7.62310-2 5.09010- 2

A(l)02 2.5821O-1 1.34510-i 9.40410-2 7.37410-2 6.I6610-2 5.33310' - 4.68410- 2

A (1)22 9.8401Q-2 4.79410-2 3.03110-2 1.99310'2 1.25510-2 7.22610-3 3.15410-3

A(1)13 1.45410-i 5.7431Q- 2 3.43310" 2 2.33110' 2 1.65510-2 1.16210-2 7.10910' 3

a(1)33 3.838iq-2 1.36210- 2 6.96310'3 3.65010-3 1.75910' 3 7.45710-4 2.10610" 4

A(l)04 1.47910-l 4.76910-2 2.64410' 2 1.7551Q-2 1.27510-2 9.64910-3 7.22910-3

A(l)24 8.06210-2 2.44310- 2 1.23710" - 7.05110-3 4.04410-3 2.17910-3 8.8291Q- 4

A(l)l4 1.60510-2 4.2121Q-3 1.73910" 3 7.16710' i 2.60210- 4 8.05010' 5 1.46310'5

(lid) Range, m = 1/3.

1/10 1/4 1/2 1 2 4 10

A (1)0° 1.000 1.000 1.000 1.000 1.000 1.000 1.000

A(l)l1 6.51110-1 3.82110-1 2.68510-1 1.99110-1 1.52010-1 1.17010-1 8.38410' 2

A(i)o2 1.394 5.40210' 1 3.12310' 1 2.16810' 1 1.76810-1 1.65310' 1 1.79510-1

a(1)22 5.22610-1 1.85210' 1 9.38810' 2 5.22910' - 3.04610' 2 1.80510-2 9.31510-3

A(l)l3 1.795 4.52310-1 2.04510-1 I.I6610-I 7.87210' 2 5.94510-2 4.6 7010' 2

a(1)33 4.60910-1 1.00910' 1 3.74710-2 1.57410-2 6.99510"3 3.20010-3 1.19410-3

A(l)04 4.194 7.55210-1 2.97810-1 1.62610-1 1.14610-1 9.92610'2 1.09210' 1

A (1)24 2.250 3.73510-1 1.31410-1 5.98610" - 3.20610' 2 1.8881Q- 2 1.06010-2

Ad)44 4.31810-1 5.94610' 2 1.63110' ~ 5.17610-3 1.7581Q-3 6.22610'4 1.6821Q- 4

The quantities and Jf" ak)in are defined in (81a) and (81 c), the pair of indices 
(zk) indicating the projectile and the target in the specific collision integral. C(^) 
is the corresponding constant in the cross section given by (5). Obviously G^i71 
for any specific pair of values (Z,n) must be calculated from a set of inhomogeneous 
linear equations.

Equation (27 b), representing the distribution of energy deposited by an ion (1) 
in a polyatomic medium (2,3. ...) is solved in a similar way. With the ansatz
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we obtain

2Z + 1

/\n
F(i)p0lyZw(B) = G(1}inE f-^=- I

G(1)Z« -2a*^G(fc)Zw^(lk)ln,
k k

(86)

(86 a)

where the notation is the same as in (85 a).
If the G(k)in are known from (85a) for k = 2,3. . , then (86a) is easy to solve 

recursively.
The ion range equation in a polyatomic target is found from (86 a) by discarding 

the last term on the right. Substituting (81), with = 0, into (86a) with (ik)in 
= 0 we obtain

d)z”
4Gd/

x- C(ifc) JA(ifc)zw
2 ~7^--------- a--------- nk G A(lk)in

(87)

This equation relates the moments over the range distribution in a polyatomic 
target t othe moments A (ik)in over the range distribution of the ion in the constit
uents. In this case the most natural choice of the constant C is C = ^a-kC(\k)> 
but the result, k

I E^\n
F{i)ln(E) = , (87 a)

is of course independent of the choice of C.

The results of this section allow us to calculate a great variety of moments 
over range and damage distributions, some of which are listed in Tables 
I—II. The calculations were done on the CDC G-20/3100 computer system 
at Chalk River Nuclear Laboratories.

6. Construction of Distributions

While an infinite set of moments uniquely determines a distribution 
(with certain restrictions; see below) it is a rather delicate task to construct 
a good approximation to a distribution from a finite number of moments. 
Various procedures have been used in the slowing-down theory of neu
trons, electrons, X-rays etc. The present approach is based on the assump
tion that the depth distribution of ion ranges and deposited energy is close 
to gaussian w7hen the medium is random and infinite.

An alternative approach, using Chebyshev inequalities (Feller, 1966) 
to obtain bounds on the integrated density, will be discussed by one of us 
in a subsequent paper (Winterbon, 1970).



Nr. 14 41

We follow customary usage in this field and use the term ‘distribution’ in the 
following where a statistician would say ‘density’. This should not cause 
confusion here because we have no occasion in this work to refer to a 
statistician’s ‘distribution’, which is an integrated density.

The gaussian or normal distribution is in many ways the simplest 
starting point. For ion ranges there appears to be experimental evidence 
that the gaussian is an adequate approximation, in the sense that the distribu
tion appears to decrease like exp (— x2) at large distances, but for depos
ited energy distributions there is no sufficiently accurate experimental in
formation. There are indications from computer simulation work of Pavlov 
et al. (1966) that distributions of vacancies or interstitials are close to gaus
sian shape, but it is felt that the number of runs made in that work is too 
small to permit definite statements.

Given a set of moments vn of an unknown distribution f and an initial 
approximation ip = ipo, there is a well-defined procedure for making suc
cessive approximations ipn to /' as follows. Let the polynominals pn be or
thogonal polynomials associated with the weight function ip. Then

n
(88)

m = 0

where cm is chosen so that the mth moment of ipm (m < n) is equal to vm. 
The pm are orthogonal polynomials so the value ol Cm does not depend on n.

This procedure has the disadvantage that the approximants ipn are not 
necessarily everywhere positive. In fact if the interval is (— oo, + co), as it is 
here, then each odd approximant is negative for sufficiently large (absolute) 
values of the argument in one direction or the other.

If ipo is a gaussian, the polynominals pm are Hermite polynomials, and 
the approximants are partial sums of an Hermite polynomial series. If ipo 
has the same mean and variance as /, we deal with a Gram-Charlier series. 
If the terms of the Gram-Charlier series are rearranged in a certain way, 
we obtain an Edgeworth series. (See, for example, Cramer, 1945; Feller, 
1966; Kendall & Stuart, 1958).

Baroody (1965) used Edgeworth’s expansion to approximate range 
distributions. Sanders (1968a, 1968b) used the same procedure, and 
Sigmund (1968, 1969 a) applied it to distributions of deposited energy. 
Pringle (1968), by analyzing accurate experimental range distributions, 
found that the best gaussian fit to his distributions was not necessarily cen
tered around the average projected range, nor was the width of it the same 
as the straggling. Similar observations were made with calculated distribu- 
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lions in the present work. Hence it was decided to examine various other 
methods for determining the parameters of the gaussian. These are described 
in this section. Also we consider a class of series with a non-gaussian 
yj0 ~ exp(- Å\x - a\ß).

At present, we deal exclusively with planar geometry. From (43), (36), 
and (76) we have

1 00 / E2m\n
O”> = , 2 (2Z+1)F^(£)P/(t?) = I(2Z+l)Az^), (89)

F Z = o \ A C ) 1

for Mi = M2, and
J72m \n

2(2/+l)A(i)z”Pz(??) 
^VC(i)/ Z

(89 a)

for Mi M2. Eq. (89 a) and the last part of (89) hold for both range and 
damage distributions, with different values for the Ain and A^)in. Similar 
relations hold for polyatomic targets. Hence, for any value of rj = cosØ, 0 
being the angle of the beam with the direction in which the depth distribu
tions are measured, we obtain a set of averages over these depth dis
tributions. We define

(90)

so that vn is dimensionless. C stands for either C, Cp), or C, depending on 
the specific problem. Thus the distribution functions depend on energy only 
in the length unit, E2m/NC. This, again, is a specific feature of power cross 
sections, for W = U = 0. When reconstructing F(,r) in the following, x will 
also have units of E2m/NC.

Introducing the new variable

£ = cc(x -a), (91)

where a and a are not yet specified, we can write

F(.r) = F(x<0) = /K) = V>(0 2 cmIIem(O (92)
m = 0

where
y(£) = (27r)_1/2exp(-£2/2) (92 a)

and IIem(J) are Hermite polynominals (Abramowitz & Stegun, 1964).
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A word should be said about convergence. The set of moments need not define 
the distribution uniquely (see for example, Feller, 1966): the moments must satisfy 
certain restrictions in the rate of growth for there to be uniqueness. From the foot
note in Feller, p. 224, it can be seen that if the density is 0(exp(— A|x|)) for some 
A > 0, then it is uniquely determined by its moments. Since the mere existen
ce of the moments suffices for the convergence (in the mean) of the Hermite series, 
and since F(x) is expected to be continuous, it follows that if F(x) = 0(exp 
(— A|x|)) then the series in (92) converges to F. We expect F(x) = 0(exp(— Ax2)), 
so we assume convergence of (92). Since we have been unable to obtain asymptotic 
limits on the vn, we can of course not prove either convergence or the stronger 
estimate F(x) = 0(exp(- Ax2)).

An expression for the cm in terms of the vr is derived in Appendix B,
eq. B6, a ™ [m\

Cm ~ ~ 2 arrrHem-r(- ax) (93)
mlr = 0\r J

For the Gram-Charlier or Edgeworth series the parameters a and x are
chosen so that

Cl = C2 = 0, (94)
whence

a = vi, x = (v2 —a2)-1^2. (94 a)

To try to improve apparent convergence, higher order moments were 
used in determining a and a. The first method tried used second and third 
or third and fourth moments. Thus we require

C2 = cs = 0 (95)
or

C3 = C4 = 0. (95 a)

Appropriate values of a and a in terms of the vr are given in Appendix B. 
Such a procedure could in principle be continued indefinitely, hut the 
amount of labour required increases rapidly. In these two cases we could 
consider y<) to be a gaussian times a linear or quadratic polynomial, so we 
call them “linear” and “quadratic” fits.

Another possible fitting criterion is that the cn should decrease rapidly. 
This may be satisfied by minimizing

N
co-2 2 Cn2COn, 

n = 0

with the weight a>n a rapidly increasing function of n. We have used a>n = n! 
and (n!)2, and got apparently good results, but have not investigated this 
procedure fully.
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Besides the gaussian base, some fits were tried with a more general 
form,

y>o = N'exp(- Å\£\P). (96)

Only one class of fit was tried, that with

Cl =C2 =C4 = 0 (96 a)

(yo is symmetric in £, so it is not possible in general to make ci = C3 = 0). 
Details are reported in Appendix B.

7. Results & Discussion

Table III and Figures 5-7 show up to fourth order moments of the 
damage and range distributions for the case of the point source, where the 
distribution is considered both parallel (X) and perpendicular (Y,Z) to the 
initial velocity p. As a length unit we use either the quantity E2m/NC(i) or 
the average path length in the LSS approximation, /?(£'), as given by eq. 
(15). The latter length unit is convenient for comparison with those calcula
tions of Lindhard et al. (1963 b) that are based on the accurate Thomas- 
Fermi cross section. Note that all but first-order moments are given in 
relative units so that the dependence on ion energy is eliminated for n > 2.

Table III contains results for the case Mi = M2 for several values of 
the exponent in in the cross section. This table shows how sensitive the dis
tributions are to the choice of the differential scattering cross section. Table 
Illa indicates that for the damage distribution there are no large variations 
with m over the most important range, m = f, 7, -y and y, except that the 
distribution broadens in the Y, Z plane with decreasing in (decreasing energy), 
as seen in <@2>/<X>2, and that the skewness in the X direction, as measured 
by (ZlX3)/<ZlX2)3/2 has a maximum for m ~ Y. The average damage depth 
<X> is always smaller than the path length R of the ion. Table IIIb shows 
similar results for the range distribution. Note that both ratios <X)/7î and 
<Z1X2)/<X)2 are slightly more sensitive to changes in m than they are for 
the damage distributions.

For Mi M2 we consider only the most important cases, in = y and 
zn = y. Fig. 5 shows the various first and second moments as functions 
of mass ratio /.i = Mz/Mi. For ~ y the results appear to be insensitive 
to in. This is also true for higher moments (Figs. 6 & 7). The ratio (Xy/R 
decreases with increasing //, since for Mi « M2 ions undergo many large- 
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Table III. Moments over the damage and range distribution, Mi = M2. 
X = direction of initial velocity; Y,Z = directions perpendicular to initial 

E

velocity; o2 = T2 + Z2; R = path length = 1 dE/NSn(E).
0

(Illa) Damage.

Ill 2/3 1/2 1/3 1/4 1/8 1/16

( E^m\<*>'M 0.1560 0.2949 0.5054 0.6563 0.9922 1.251

<X>/^ 0.6239 0.5899 0.5054 0.4375 0.2835 0.1668
<zlX2>/<x>2 0.3388 0.3807 0.4070 0.4286 0.5766 0.9989

<e2>/<*>2 0.2601 0.3146 0.4397 0.5714 1.098 2.121
<4X3>/<ZlX2)3/2 0.4930 0.7333 0.8468 0.8263 0.5412 0.2260

<xe2>/«x><e2» 1.394 1.406 1.332 1.261 1.119 1.041

<dX4>/<dX2>2 2.807 3.373 3.782 3.853 3.623 3.310
<X2g2>/(<X2><e2>) 1.663 1.723 1.608 1.485 1.234 1.096

<e4>/<e2>2 3.706 3.773 3.402 3.073 2.478 2.186

(Illb) Range.

III 2/3 1/2 1/3 1/4 1/8 1/16

[E2m\
0.2040 0.3687 0.5973 0.7500 1.069 1.301

<X>/4? 0.8159 0.7374 0.5973 0.5000 0.3053 0.1734

<Z1X2>/<X>2 0.2050 0.2756 0.3405 0.3846 0.5682 1.007

<e2>/<*>2 0.2895 0.3519 0.4825 0.6154 1.1410 2.163
<z1X3>/<z1X2)3/2 0.2602 0.5456 0.6868 0.6800 0.4522 0.1962
<Xe2>/«X><e2>) 1.134 1.195 1.196 1.168 1.086 1.031
<ZfX4>/<ZlX2>2 2.733 3.134 3.503 3.597 3.486 3.258

1.219 1.341 1.357 1.313 1.173 1.076

<(?4>/<e2>2 2.480 2.729 2.742 2.638 2.338 2.144



46 Nr. 14

0.1 I 10
M2/M I

Fig. 5. First and second order averages over damage and range distribution as functions of 
E

mass ratio M^M^, R = path length = dE/(NS n(E)); X-direction parallel to initial velocity;
0

AX = X —(xy. Dashed line, m = 1/3; solid line m = 1/2.
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M2 /M I
Fig. 6. Third order averages over damage and range distribution. Definitions as in Fig. 5.
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RANGE

Fourth order averages over damage and range distributions. Definitions as in Fig. 5.

}<X2Y2>
<x2xy2>

<ax4>
<AX2>2
<Y4>
<y2>2
<x2y2>
<x2><y2>

DAMAGE

angle deflections. Similarly, the distributions broaden in each dimension 
when y increases.

The distributions are slightly prolate at all mass ratios considered, most 
pronouncedly so for /z < 1. For /z » 1 the distributions are practically 
spherical.
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The simple stopping vs. path length argument of (18, 19) gives <X>/7? = 
0.5 and 0.4, and <zLY2>/<X>2 = 0.333 and 0.429, for m = ± and | respec
tively. Comparison with Fig. 5 shows that this approach gives rather poor 
results at all mass ratios.

Figure 6 shows third order moments. For a purely gaussian distribution 
the ratio (zEY3)/(zlX2)3/2 would be zero and <Ary2>/(<X>< T2)) = 1. The range 
distribution appears to be more nearly gaussian than the damage distribu
tion, especially for /z it 1. The same conclusion can be drawn from an 
inspection of fourth order moments, Fig. 7. For a gaussian, one would 
obtain <ZlX4>/<zlX2>2 = <y4>/<y2>2 = 3, and <X2y2>/«X2><y2» = 1. The 
most pronounced deviations from these relations occur in the damage density 
for /z « 1 and zn = y.

In Figs. 8a-c we compare range moments with the corresponding damage 
moments. Fig. 8 a shows that the mean damage depth is consistently smaller 
than the mean projected range. The difference is small except for /z « 1 
and m = where it is a factor of ~ 2. In this case heavy damage is 
created all over the ion path, so that despite energy transport of recoiling 
atoms the ion comes to rest essentially at the far end of the damage cloud, 
while <X> is in the center. This picture is consistent with Fig. 8 b that shows 
that the damage distribution is much broader than the range distribution 
for /z « 1. It may be surprising to see that the opposite is true for // it 1. 
This is obviously because we are considering the damage distribution of 
many events. For /z ~ 1, the ion undergoes large deflections, but mainly 
those in the beginning, where the ion still has much energy to share with 
its collision partners, determine the region where the energy is located, 
while those collisions undergone by the ion toward the end of its slowing 
down still may contribute to range straggling, but not to a broadening of 
the damage distribution. Note that the effect is not very pronounced, about 
a factor of 1.3 in the linear dimensions at the highest mass ratios considered. 
Fig. 8 c shows the same qualitative effect for the transverse extension <y2>, 
except that (Y2)r/(Y2)d goes through a maximum near /z = 2.

Some approximate damage and range distributions are plotted in Figs. 
9-11. Fig. 9 (damage, m = y, /z = 1) compares various methods of fitting. 
Case 1 is the Edgeworth expansion, cases 2 and 3 the linear and quadratic 
fits, and case 4 the non-gaussian. (In this case the exponent ß = 1.49). 
For the Edgeworth and non-gaussian cases the heavy line is ipo, the initial 
approximation.-In the other two it includes the linear or quadratic poly
nomial as well. The two to four lightly drawn lines include the first cor
rection terms. The Gram-Charlier expansion is not shown. In it the density 
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M2 / M|
Fig. 8 c.

Fig. 8. Ratio between averages over range and damage distributions as a function of mass ratio. 
Dashed line, m = 1/3; Solid line, m = 1/2.
a) First order averages. (X)r = average projected range; (X)d = average damage depth.
b) Second order averages. (ÂX2)r = straggling of projected range; (ZlX2)/) = width of the 

damage depth distribution.
c) Second order averages. {Y2)r = transverse straggling of range distribution; =

transverse width of damage distribution.

had pronounced oscillations, indicating that the fit was poor. In the Edge
worth expansion the minimum outside the surface deepens and approaches 
the surface as the order of approximation increases, and the tail within 
the target is not well fitted. In the linear and quadratic fits the tail does not 
appear to change with the order of approximation and the minimum out
side the surface is farther out. Again this minimum moves in with increasing 
order. The non-gaussian curve, case 4, has a narrower peak because with 
ß = 1.49, the tails have greater weight.

Range distributions were all fitted well with the Edgeworth expansion, 
and the exponents ß of case 4 were close to 2.

Figure 10 compares damage and range distributions (zn = y). The 
Edgeworth expansion for damage in 10 a (// = 4) converges reasonably 

4*
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Fig. 9. Damage distribution as a function of depth. In units of R(E). m = j, = 1. Heavy 
line, initial approximation Light lines, higher approximations.
1) Edgeworth series.
2) i/)0 = Gaussian times linear function.
3) t/)0 = Gaussian times quadratic.
4) Non-gaussian, y0 = N'exp(-Ä|£|^), ß = 1.49.
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well; for = 7 (Fig. 10b) the Edgeworth expansion gave no signs of con
vergence. The gaussian parameters plotted here were obtained by minimizing

20 
co-2 2 cw2(n!)2. 

n = 0

Approximants yo (the heavy line), ipi, y2, and yoo are plotted.
Figure 11 shows isodcnsity contours (contour interval 10% of max-, 

imum density) in the X-Y plane of range and damage for rn = y, = 1, 
The distributions were constructed using the formalism of Appendix C 
with parameters chosen to minimize

/ 20 10
Coo-2 2 cTOo2(m!)2+ 2 Con2(2/1)! 

\m = 0 n = 0

At high densities both distribution functions narrow toward the rear, 
but at low densities they appear to broaden. The maximum of both distri
butions occurs closer to the surface than the maximum of the corresponding 
depth distributions, especially in case of the range plot. This is consistent 
with increasing lateral spread with increasing depth, as evident from fig. 11.

8. Comparison with Experiment & Computer Simulation
Radiation Damage Measurements

In a previous communication (Sigmund & Sanders, 1967) we attempted 
to compare some results of the theory with experimental radiation damage 
distributions. Sufficient evidence was found to support one of the main 
results of the theory, namely that the average damage depth does not differ 
very much from the average projected ion range (Fig. 8a). There are as 
yet few experimental results on damage distributions*, and several problems 
occur when these are compared with theory.

a) Some experimental techniques, such as those based on the orientation 
dependence of Rutherford scattering (Bøgii, 1968), the change in optical 
reflection (Hines et al., 1960), and the dependence of the sputtering 
yield on prebombardment (MacI)onald et al., 1966a, b) can be used 
only on single crystals. Therefore low-dose bombardment may lead to 
damage distributions that are more or less influenced by channeling 
effects. High-dose bombardment, on the other hand, leads to saturation 
effects of bombardment damage and, in some cases, the distributions

* Note added in proof: Substantial progress has been made since the submission of this 
paper. The reader is referred to the Proceedings of an Int. Conf, on Ion Implantation in Semi
conductors, Thousand Oaks, Calif., 1970, to be published in Radiation Effects.
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Fig. 10a.
O 2
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Fig. 10. Damage and Range Distributions. Depth in units of -R(F). m = Heavy line, initial 
approximation. Edgeworth series, except 10 b, damage

Gaussian parameters for damage density in Fig. 10b chosen by minimizing weigh
ted sum of squares of the cn. Base density y>0, y>lt rp2 and y20 shown.
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Fig. 11. Damage and Range isodensity Contours, m = j-, // = 1. Contour interval 10 °/0 of 
maximum. Length in units of R(E').

might change because of radiation-enhanced diffusion. Therefore ex
periments on single crystals can be used for quantitative comparison 
only when done at sufficiently low doses to prevent saturation effects 
and when the ion beam has not been aligned with a channeling direc
tion.

b) Physical properties that are affected by ion bombardment damage may 
also be affected by implanted ions. The distinction between the ion 
range and damage distributions appears most direct with the orientation 
dependence of Rutherford scattering (Davies et al., 1967).
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c) Electron microscopy of large defects (Parsons et al., 1964; Merkle, 
1966; Thomas et al., 1969) leads to results that are not necessarily 
comparable with the present theory. First, not all deposited energy 
leads to visible damage. There may be a threshold energy for creating 
visible damage clusters, the value of which is probably in the keV 
region but is not accurately known (Merkle, 1966; Thomas et al., 1969; 
Högberg et al., 1969 a, b). Consequently, the region where visible dam
age is created need not coincide with the actually damaged region. 
Second, even when polycrystalline samples are irradiated the part of 
the target that is investigated under the microscope is often a crystallite 
of definite (low index) orientation, so that channeling may play a role. 
Third, image-size distributions of damage clusters, which are measured 
more easily than depth distributions (Parsons et al., 1964; Thomas et 
al., 1969), are not comparable to the quantities discussed in the present 
paper, since they concern properties of single collision cascades.*

With these reservations in mind, we find that none of the existing ex
perimental data can be used for quantitative comparison with our theory. 
However, depth distribution measurements by use of Rutherford scattering 
are being performed currently by several groups.** For a more qualitative 
comparison, we discuss the work of Hines et al. (1960); MacDonald et al. 
(1966a, b), and Norris (1969).

Hines et al. bombarded quartz, with keV heavy rare gas ions at doses 
around 1014 ions/cm2. The effective thickness of the damaged layer was 
determined from optical reflexion measurements and turned out to be largely 
independent of ion dose. One would expect, therefore, that neither satura
tion effects nor diffusion played a significant role. Table IV shows experi
mental results and several calculated range and damage quantities. The 
effective layer depth can be estimated from the sum {<æ> + a<Zlæ2>1/2}damage) 
where « is a number of the order of 1 to 2. There is good agreement between 
measured and calculated depths for Ne+ and A+ bombardment, while the 
calculated depths are much smaller than the measured ones for Kr+ and 
Xe+ bombardment. This discrepancy is probably caused by channeling of

♦Note added in proof: Average cluster size is discussed in a forthcoming paper by J. E. 
Westmoreland & P. Sigmund (Radiation Effects, 1970).

** Note added in proof. In three recent papers on damage-depth distributions measured by 
Rutherford-scattering, comparison is made with results of the present paper (E. Bøgh, P. Hø
gild, & I. Stensgaard, Rad. Eff. 1970; L. C. Feldman & J. W. Rodgers, J. Appl. Phys. 1970; 
F. H. Eisen, B. Welch, J. E. Westmoreland, & J. W. Mayer; Atomic Collision Phenomena in 
Solids (ed. by D. W. Palmer et al.) North Holland 1970 p. 111). W’e also refer to a forthcoming 
paper on depth distributions in the electronic-stopping region by P. Sigmund, M. T. Matthies, 
& D. L. Phillips.
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Table IV. Range and Damage Quantities for Quartz Bombarded with Rare 
Gas Ions. Measured Layer Depth from Measurements of Hines and Arndt 
(1960). In the calculations, SiCL has been approximated by a monatomic 

target with the same density, atomic number 10 and atomic weight 20.

E e <*> <JX2)l/2 <v> <JX2)l/2 Measured

Ion Damage Damage Range Range
Depth

keV Å Å Å Â Å

Ne+ 38.3 1.14 372 229 450 236 740
(m = 1/2) 43.9 1.31 428 264 518 272 850

51.8 1.55 504 310 610 320 950
A+ 22.9 0.422 215 150 259 114 600

(m = 1/2) 38.4 0.706 360 251 434 191 700
59.0 1.087 554 386 666 293 1000

Kr+ 20.3 0.094 84 50 123 41 500
(m = 1/3) 39.7 0.183 131 78 193 64 600

59.0 0.272 171 101 251 83 670
Xe+ 20.3 0.039 75 43 119 32 470

(m = 1/3) 39.4 0.075 117 67 185 50 530
59.0 0.113 154 88 243 65 580

the ions. Note, however, that in pure silicon a dose of 1014 Xe+ ions would 
be sufficient to suppress channeling almost completely (Davies et al., 1964).

MacDonald et al. (1964 a, b) measured the sputtering yield of germanium 
for low energy A+ ions (100-200 eV) as a function of the sputtered layer 
thickness. The targets were pre-bombarded with 500-1000 eV rare gas ions, 
and the sputtering yield was enhanced over the layer thicknesses that cor
responded to the penetration depths of the pre-bombarded ions. Typical 
pre-bombardmcnt doses were 1016 to 1017 ions/cm2, enough to make the 
target surface amorphous (Parsons, 1965; Mayer et al., 1968). Also, with 
a range of about 20 Å the (calculated) dopant concentration is of the order 
of 1 dopant ion/atom within the penetration depth and, finally, the layer 
thickness sputtered by the pre-bombardment may well be greater than the 
range of the ions. All these factors indicate that the measurements can pro
vide only a very rough estimate of the damage and penetration depth of 
the pre-bombarded ions, and the good agreement with the calculated depths 
(Sigmund et al., 1967) confirms this. A distinction between range and damage 
distributions does not appear feasible.

Norris (1969) measured depth distributions of vacancy clusters observed 
by stereo electron microscopy in gold and nickel bombarded with 80 to 
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150 keV gold and mercury ions at doses of the order of 1015 ions/cm2. 
Channeling of the ions plays a role but does not appear to be dominant, 
at least not in the target of (112) orientation. The results were compared to 
measured and calculated ion range distributions (for random slowing down) 
and it was found that the average depth of vacancy clusters was smaller 
than one would expect from our Fig. 7 a. The difference is not very pro
nounced, possibly still within the experimental accuracy. Note that less 
than one cluster is observed per incident ion, and that the average cluster 
diameter is of the order of the average damage depth.

A similar investigation has been carried out by Thomas et al. (1969) 
at lower ion energies (5 to 40 keV) and much smaller ion doses (109 to 
1012 ions/cm2). The measured depth distributions appear to be dominated 
by channeling and dechanneling of the bombarding ions. A comparison 
with these results is, therefore, outside the scope of this paper.

Range Measurements

Although a considerable amount of information on range distributions 
is contained in Tables I—III we do not make a comparison with measured 
range distributions in this paper. There are several reasons for this. First, 
ion ranges are not a main subject of this paper. Second, it has been well 
documented that random-slowing-down theory with the Thomas-Fermi 
cross section predicts ion ranges accurately (Lindhard et al., 1963b; Schiøtt, 
1966, 1968). Third, contrary to radiation damage distributions, range dis
tributions can be measured very accurately (for recent reviews see Mayer 
& Marsh, 1969; Mayer et al., 1969), and for a quantitative comparison 
an accuracy of at least l()°/o in calculated average range and straggling is 
required. Fig. 4 b shows that the difference betweem the two representative 
cases ni = y and y is usually larger than this limit and, more important, 
electronic stopping is usually not negligible at energies where measurements 
of high relative accuracy can be made. Some results, however, mainly on 
very heavy ions in the elastic stopping region, will be compared with ex
perimental results elsewhere (Winterbon, 1970).

Computer Simulation

Computer simulation has been used occasionally to calculate ion ranges 
and collision cascades. In the present context we are mainly concerned with 
Monte-Carlo-type computer codes, where collisions are governed by a cross 
section. These calculations are essentially equivalent to ours, provided 
that the cross sections are similar.
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Table V. Comparison Between Range Quantities Found from Computer 
Simulation (Oen et al., 1964) and Analytic Calculation (present work).

a) Straggling in Projected Range, (dX2)1/2/(X).

Ion-Target M2IMX Energy
Range (keV)

Computed
Straggling

From
Fig. 5 

m = 1/2

From
Fig. 5 

m = 1/3

Xe+ - Al 0.20 5 —250 0.25-0.30 0.33 0.30
K+ - Al 0.64 5 -100 0.42-0.47 0.47 0.50
Cu+ - Cu 1.0 1.75-250 0.47-0.54 0.52 0.59
Kr+ - W 2.16 4.5 -250 0.57-0.63 0.66 0.78

b) Transverse Spread (o2)/(X2)

Ion-Target Mass Ratio Computed From Fig. 5 
m = 1/2

From Fig. 5 
m = 1/3

Xe+ - Al 0.20 0.08 0.07 0.09
K+ - Al 0.64 0.18-0.23 0.18 0.24
Cu+ - Cu 1.0 0.28-0.34 0.27 0.36
Kr+ - W 2.16 0.50-0.56 0.48 0.65

The most extensive study of this type has been done by Oen et al. (1963, 
1964), but only range distributions were investigated. It was already pointed 
out in these papers that average ranges calculated for purely elastic scat
tering agree well with experimental results at sufficiently low ion energies, 
and also with the range-energy formula of Lindhard et al. (1963b), in 
those cases where good agreement is expected. Table V shows a comparison 
between computed straggling data (both longitudinal and transverse) with 
our analytical results. The computer data are based on Thomas-Fermi in
teraction with neglect of electronic stopping. Most of the computed straggling 
parameters depend slightly on energy, because they are not based on a 
power cross section. One recognizes that this variation with ion energy has 
about the same magnitude as the difference between our results for m = 
and -j-, and the general agreement is excellent. We made this comparison 
only to give an indication of the accuracy with which analytical and Monte- 
Carlo range calculations can agree with each other, provided the input 
parameters are in close enough agreement. Note that a slight difference is 
always expected, especially at low energies, since the interaction potential 
has to be truncated at some finite distance in a Monte-Carlo simulation of 
binary collision events.
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Quite recently, Pavlov et al. (1967) made a series of Monte-Carlo simula
tions to get both range and damage depth distributions for several ions 
implanted in silicon, for applications in ion-implanted semi-conductors. 
Ion doses were about the same (400-1000 ions for each energy and ion
target combination) as those of Oen et al. Mostly light ions were used in 
the medium and upper keV region, so that electronic stopping (which was 
taken into account) dominated. While some runs have been made simulating 
arsenic ions bombarding silicon, where electronic stopping is only a minor 
correction at E ~ 50 keV, damage distributions were not recorded in just 
these runs. Hence, only a qualitative comparison is possible for the Al+ - Si 
bombardments, where the ratio between the median ion range and the median 
damage depth turned out to decrease from 1.52 to 1.44 from E = 25 to 
150 keV. This is to be compared with our calculated ratio (x}R/(xyD = 1.25 
for /z 1 and m = y (Fig. 8 a). The difference may be caused by the dif
ference between median and average penetration depths and/or the fact 
that hard-sphere scattering was assumed in the computations to simulate 
low-energy collisions. The difference between vacancy and interstitial dis
tributions is considered to be insignificant (Sigmund et al., 1968).

Backscattering of Ions

A very sensitive check on the validity of calculated range distributions 
is the backscattering coefficient a of the implanted ions. Preliminary calcula
tions (Sigmund, 1968) show that a depends very sensitively on the mass 
ratio /z. The results are in qualitative agreement with experimental data of 
Brown et al. (1963). A joint experimental and theoretical effort to establish 
back-scattering coefficients for a number of ion-target combinations has 
been started.

Sputtering Measurements

The distribution of deposited energy is a key quantity in the theory of 
sputtering. First, the amount of energy deposited outside a target surface 
determines the sputtered energy (Sigmund, 1968) and can be measured 
thermomelrically (Andersen, 1968). Second, the energy deposited in the 
target surface is converted into kinetic energy of a number of slowly moving 
atoms, part of which can get sputtered. The general formula for the sput
tering yield is (Sigmund, 1969a)

S(æ,E,^) = ÄFQr.E,?/), (97)
Mat.Fys.Medd.Dan.Vid.Selsk. 37, no. 14. 5
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where A is a material constant, x the distance between the bombarded and 
the sputtered surface (for backsputtering x = 0), E the ion energy and rj 
the cosine of the angle of incidence of the beam. F(x,E,rj) is the deposited 
energy distribution for either equal or unequal masses, in the notation of 
eq. (38).

It was shown that eq. (97) can be used successfully to predict sputtering 
ratios for a great number of ion-target combinations and to obtain good 
agreement with experimental results. While extensive use has been made 
of the results of the present paper in the sputtering work, there is no need 
for repeating the results here.

In view of recent thermometric measurements of Andersen (1968, 1970), 
a detailed discussion of the sputtered energy would be desirable. While 
several qualitative predictions of the theory (Sigmund, 1968) were confirmed 
by the experiments, the quantitative agreement is satisfactory for only a 
limited range of mass ratios. More accurate estimates of the sputtering 
efficiency on the basis of the results of the present paper will be reported 
elsewhere (Winterbon, 1970).
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APPENDIX A

Moment Integrals
The first integral in eq. (78) in the equal mass case, has the form

1
7(ct,Z>,Z) = Jd»-1+a(l-Z)~i + bPz((l-C1/2) (Al)

o
so that 7(a,Z>,0) = B(a,b), the beta function and 7(a,Z>,l) = B(a,b +1). Using the 
Legendre polynominal recurrence relation we find

(Z + l)7(a,Z>,Z + l) = (2Z + l)7(a,Z>+f,Z)-Z7(a,Z>,Z-l). (A2)

To evaluate the 7’s from this, the beta functions B(a,b) and B(a,b +|) are calculated, 
and from these the quantities B(a,b + 1), B(a,b + |), B(a,b + 2),.. . are obtained 
using the recursion relation

B(a,Z> + l) = —-B(a,Z>). (A3)
a + b

In the unequal-mass case, the first integral is

V
Iy(a,b,l) = JdZZ-i + ^l-Z)-i + 6Pz((l-Z)i/2 + af(i _/)-i/2) (A4)

o

Now Iy(a,b,o) = By(a,Z>), the incomplete beta function. From the Legendre poly
nominal recurrence relation, and the obvious relation

Iy(a,b,l) = 7y(a,&-l,Z)-7y(a + l,&-l,Z), (A5)
we find

(Z + 1) 7y(a,Z>,Z + 1) = (2Z + l)[(l-a)7y(a,&+i,Z) + 
aly(a,b -|,Z)J - lly(a,b,l-l).

The required values of the incomplete beta function are generated from the initial 
values By (a, b), By (a, b + |) with the recursion relation

By(a,b + 1) = y«(l - y)*/(a + b) + bBy(a,b)/(a + b)
(b * 0)

(this may be derived by integration by parts and using By(a,b + 1) = By(a,b)— 
ya

By(a + l,b) and, if necessary, By(a,o) = —F(l,a; a + l;y), where F is the hy
pergeometric function.

(A 7)

(A 6)

5*
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The second integral in eq. (78) is essentially the same in both equal-mass and
unequal-mass cases:

7<zn(a)
1

o
(A 8)

From Erdelyi et al. (1954), p. 313, we have

27ïV2r(2a)

22arla + 1 Zjr(n + 1 + 1/2)
(A 9)

We use the duplication formula for F-functions, (Abramowitz & Stegun, 1964),

to get

from which

and

F(2a) = 22a~1n~1/2r(a)r(a + i),

Ki(a) ____r(a)r(a + V2)
Fla+^Z-ZjF(a + l + 1/2)

K0(a) = 1/a

K^a) = l/(a + 1) 

a — (Z + l)/2Kz + 2(a) = \ -/ Kt(a).
a + 1 + Z/2

(A 10)

(All)

APPENDIX B

Expansions of the Distributions
In this paragraph we derive the coefficients for expansion of depth distribution 

functions in terms of Hermite or more general orthogonal polynomials. Let the 
(unknown) distribution function be F(x), and introduce the new variable

f = a(.r — a), (B1)
so we can write

F(x) = f(£) = y(D J cWiHem(D, (B2)
m = 0

where
v(D = (27t)-i/2exp(-ê2/2). (B3)

We still have the freedom of choosing the parameters oc and a in (Bl).
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We wish to express the cm in terms of the moments vr of F,
CO

dxxr F (x).
— co

Using the orthogonality of the Hermite polynomials we have

n\cn = dl-Hen(£)f(&

dxHen(a(x — a))F(x)

[”/2] n!(-)man-2m 

om!2w(n - 2m)!

n — 2m
2 (’-r2m)(-«)n — 2m-r

r = 0
Jdxxr F(x)

(B4)

(5B)

The integral is vr. Interchanging the order of summation and recognizing the inner 
sum as a Hermite polynomial, we have

cn = 2 (rw)arrrHew_r(-aa). (B6)
n! r = 0

The conditions c/ = 0 reduce to the following:

ci : a — vj = 0
C2'. (a2 — 2avx + V2) oc2 — 1 = 0
C3: (a3 — 3a2i’i + 3ar2 — V3)a2 — 3(a — 1’1) = 0
C4: a4(a4 — 4a3?i + 6a2V2 — 4av^ + v$) — 6a2(a2 — 2avi + V2) + 3 = 0.

In the usual Gram-Charlier expansion one chooses ci = C2 = 0 and therefore a = vi 
and a = Z>-1/2, where b = V2 — ri2. In the C2 = C3 = 0 case,

a = vi + (d/2)1/3, and

a-2 = b + (d/2)2/3, 
where

d = i>i3 + 3&i»i — v$.

In the C3 = C4 = 0 case,
a = + (d/2)1/3 — z, and

a-2 = b + (d/2)2/3 + e, say, 
where

e = z2((d/2)F3 + z/3)/((d/2)V3 + z) 
and z is a root of

d(l + z)2 - 2z3(d/2)4/3(4 + 5z + 2z2 + z3/3) = 0

with Tl = V4 — 4i>3Vi — 3v22 + 12v2ri2 — 6vi4 + 6(d/2)4/3. 
There are two real roots of (B7a), only one of which is useful.

(B7)

(B7a)
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Consider now a non-gaussian distribution:
Let

y(£) = N'exp(-AI^). (B8)

The moments of y> are (y = (2n + 1)//S)

— 00

00
2N' T(r)
—fT IT

Mïn + 1 = 0.

(B9)

We take N' = ßA1/ß/2r(l/ß), so that Mq = 1. We can again write the density as
00

f(£) = 2 cnHn(^y>,
m = 0

where the Hn(J-) are a set of polynomials orthogonal on (-oo,oo), with the weight 
function y(£), chosen so that

Ho = 1,
Hr =
Hn + 1 — £Hn —rnHn_i.

(BIO)

The recurrence coefficients rn are equal to quotients of Gram determinants, as dis
cussed in Erdelyi et al., 1963.

The norm of the polynomials Hn is (Erdelyi et al., 1963)

Write

J dÇHn\typ(£)
n p n

= n = n ri- 
i=l J 4=1

[n/2]
h n(£) = 2 V^“2m; 

m = 0
from (BIO) we have

hmn = 0, m < 0 or m > n/2

hon = 1

so that

(Bll)

(B12)

The expression for the cn cannot be expressed as concisely as in the gaussian case. 
Proceeding as before, we obtain

n
[n/2]

a 2 W«n-2myn-2m,
nz = 0

(B13)
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where
n

Un = 2 (”)(" a)n-lVi.
i = O

(B14)

We now have three parameters, a, ß, and Äaß. z may without loss of generality 
be chosen to satisfy some criterion of computational ease, but should reduce to 
A = I for ß = 2; in all the calculations done here, 2 was chosen so that ri = 1.

The distribution y>o is unskewed, so we can not demand that Ci = c3 = 0, or, 
more generally, that any two odd coefficients vanish simultaneously.

The only fitting that has been done is the simplest case,

ci = c2 = c4 = 0.
These conditions are

ci: yi = 0
c2: a2z/2 - rx = 0
c4: a4y4 - (ri + r2 + c3)a2y2 + ZV3 = 0,

so that
= ^4 _ 1 

ci y22
with

r2/ri = I\l/ß)I\5/ß)ir\3/ß), from (B14).

(B15a)
(B15b)
(B15c)

(BIG)

(BIG a)

We want also the integral of f outside the target: 

where

0 — aoc

n = 0 n = 0
— 00— 00

r 1 f 00 1 00 L^/^J
dxf(x) = - # 2 cnHn(&y> = - 2 Cn 2 k

J a «/ = 0 x n = 0 w, = 0
lmn In — 2m

m = 0

— aa

In = J d^nN'e~Å^P =
— 00

(- vmn + l/ß,l(ax)ß) 
2r(i/ß)An/ß

(B 17)

(B17a)

and the r in the numerator is the incomplete gamma function (Abramowitz & 
Stegun, 1964).

APPENDIX C

Point-Source distributions
For a point source the distribution function can be studied in three dimensions. 

We begin by comparing moments of the distribution in various co-ordinate systems 
(Fig. 12). We have been calculating the moments

vn = f dxdydzxnFÇr ), (Cl)
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dropping the velocity variable v for the moment. We have written (Cl) as a Legendre 
polynomial series in the angle 0 between beam and surface normal:

[n/2]
vn = M6) = 2(21 + l)A?Pz(cos0) = 2 (2n-4m + l)A”_2wtPw_2ro(cos0) (C2)

m = 0

Moments in the following beam-centred coordinate systems are also used:
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1) rectangular coordinates XYZ:

fn,2m,2l = dXdYdZX” Y^Z^F(r )

2) cylindrical coordinates

(^n,2m = 2?1 dXdçQXno2mF( r)

3) spherical coordinates r,(p,tp:

fmn = 2n drr2d(cosç?)rnFm(cos<p)F( r ).

One relation is trivial:

fn, 2m, 21 =

(C3)

(C4)

(C5)

(C6)

Another is given by Berger and Spencer (1959); in our notation,

1 [n/2] n
fn-2m,2m,0 — / n \ 2 — 4/ + 4)Afl_2lßnml-

\2m) I = 0

By similar methods one can show
[n/2]

-4-71-2771 = 2 (21) fn-2l, 21, 0 xnml■>
I = 0

[n/2]
a>n-2m,2m ~ 2

I = 0

fnI n-2m —

fn-2l(.^n — 41 + l)<xnim

[n/2]
2 ™n-2l,2lßnlm>

I = 0
and

a n =
[n/2] [n/2]
2 (2n- 41 + 4)fn-2i 2 xnmk xnlk >

I = 0 k = 0

where we have written

xnml = 2n -*• S G)
* = 0

(—)i-*(n — 2Zc) ! (n — m — k) 
(m - Zc)!(2n - 2m - 2k + 1)!

and
1

ßnml = ~
[71/2]
2 (kï-21 \mjk = k0

()*-i(2n -21- 2k)l
(k — /) ! (n — 1 — k) ! (n — 2k) !

(C7)

(C8)

(C9)

(CIO)

(Cll)

(C12)

(C13)

with Zco equal to the larger, and k± the smaller, of m and I.
From these moments, for example the con>2p we can construct the density in 

three dimensions, as in Fig. 11, in much the same way as was done in one dimension.
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